esp@cenet — Bibliographic data

TELECOM PLATFORM SYSTEM AND METHOD

Publication number: W09930514 (A2) Also published as:
Publication date: 1999-06-17 WO09930514 (A3)
Inventor(s): SHAH MAHESH V [US]; MCDANIEL DAVID W [US]; :] JP2001526508 (T)

VATTERONI JAMES R [US]; JAGGERS STEPHEN B [US];
WORLINE MARK E [US] =

Applicant(s): ALCATEL USA SOURCING LP [US]; SHAH MAHESH V [US];

JAGGERS STEPHEN B [US]; WORLINE MARK E [US]

Classification: OES >
- international: H04Q3/545; H04L12/24; H04L12/26; HO4M3/00; H04Q3/00; Cited documents:
HO04Q3/545; H04L12/24; H04L12/26; H04M3/00; H04Q3/00;

(IPC1-7): H04Q3/00] WO09707638 (A1)

- European: HO4L12/26M3B; HO4L12/24E; HO4L12/26M; HO4G3/00D4W WO09731451

Application number: WO 1998US26439 19981211

ES2251118 (T3)
EP1040678 (A2)

MCDANIEL DAVID W [US]; VATTERONI JAMES R [US]; T EP1040678 (B1)

WO09724837 (A1)

Priority number(s): US19970069576P 19971212

11 W09320508 (A1)
] xP000634813 (A)

more >>

Abstract of WO 9930514 (A2)

A method of providing a software interface between application programs performing
telecommunications functions and an operating system running on at least one node at a site supporting
the application programs, and further forming an interface between the application programs and a
telecommunications network is provided.; The method includes providing a network platform manager
operable to remove nodes from service, restore nodes to service, remove applications from service, and
restore applications to service, providing a network system integrity manager operable to monitor the
nodes and to enable failed nodes to recover, providing a configuration manager operable to interface
with a host coupled to the telecom platform, providing a node platform manager operable to provide
management functions for a node, providing a service manager operable to start and stop processes at
the direction of the node platform manager, and providing a node system integrity manager operable to
monitor inter-node links.

Data supplied from the esp@cenet database — Worldwide

http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=9930514&KC=&FT=E

Page 1 of 1

6/24/2009

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/30514
H04Q 3/00 A2

Q (43) International Publication Date: 17 June 1999 (17.06.99)

(21) International Application Number: PCT/US98/26439 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,

(22) International Filing Date: 11 December 1998 (11.12.98) GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP,

KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, 8D, SE, SG,
(30) Priority Data: SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW,

60/069,576 12 December 1997 (12.12.97) uUs ARIPO patent (GH, GM, KE, LS, MW, SD, 5Z, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

(71) Applicant: ALCATEL USA SOURCING, L.P. [US/US]; 1000 GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
Coit Road, Plano, TX 75075 (US). BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

(71)(72) Applicants and Inventors: SHAH, Mahesh, V. [US/US];
2608 Bowie Drive, Plano, TX 75025 (US). MCDANIEL,
David, W. [US/US]; 1203 Tarpley Avenue, Dallas, TX | Published
75211 (US). VATTERONI, James, R. [US/US]; 413 West Without international search report and to be republished
Oak Street, Wylie, TX 75098 (US). JAGGERS, Stephen, upon receipt of that report.
B. [US/US]; 1508 Barcley, Carrollton, TX 75007 (US).
WORLINE, Mark, E. [US/US]; 813 Sycamore Creek, Allen,
TX 75002 (US).

(74) Agent: JEANG, Wei, Wei;, Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

(54) Title: TELECOM PLATFORM SYSTEM AND METHOD

DEVELOPER'S APPLICATIONS
r --—--‘--‘-1
M R
™ jweer 1 [TELECOW PATFORM APls | H
TN ey e e vy Sy N -d
bbb
1 1
150 LAYR {
\E. MNBER 2 [TELECOM PLATFORM SERVICES j Pt
,-----.,K,f_ﬂ.\. ______ -
! 1 '
i
= s
161 '
[}
i 1
| TR]
| NUMBER 3 b

0S, NETWORK PROTOCOLS, 3rd PARTY

D o o e e o ot o e o S it Bt T i - —— o — - o = wd

(57) Abstract

A method of providing a software interface between application programs performing telecommunications functions and an operating
system running on at least one node at a site supporting the application programs, and further forming an interface between the application
programs and a telecommunications network is provided. The method includes providing a network platform manager operable to remove
nodes from service, restore nodes to service, remove applications from service, and restore applications to service, providing a network
system integrity manager operable to monitor the nodes and to enable failed nodes to recover, providing a configuration manager operable
to interface with a host coupled to the telecom platform, providing a node platform manager operable to provide management functions for
a node, providing a service manager operable to start and stop processes at the direction of the node platform manager, and providing a
node system integrity manager operable to monitor inter—node links.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania

Armenia

Austria

Australia

Azerbaijan

Bosnia and Herzegovina
Barbados

Belgium

Burkina Faso

Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic

. Congo

Switzerland
Cbate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

TIsrael

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic Peopie’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ)
™
TR
TT
UA
uG
us
uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 99/30514 PCT/US98/26439

TELECOM PLATFORM SYSTEM AND METHOD

TECHNICATL, FIEID OF THE INVENTION
This invention is related in general to the field of
telecommunications. More particularly, the invention is

related to a telecom platform system and method.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a telecom
platform forming an interface between application programs
performing telecommunications functions and an operating
system running on at least one node at a site supporting
the application programs, and further forming an interface
between the application programs and a telecommunications
network. The telecom platform includes network management
processes operable to provide inter-node configuration,
monitoring and management functionality, node management
processes operable to provide node initialization,
configuration, monitoring, and management functionality,
event processes operable to provide initialization,
termination, and distribution of tasks 1in response to
predetermined events, common processes operable to provide
a library of a plurality of programming tools for the
development of the application programs, communications
processes operable to provide message handling

functionality, and distributed object processes operable to

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

provide a distributed database repository for object-based
communications.

In another aspect of the present invention, a method
of providing a software interface between application
programs performing telecommunications functions and an
operating system running on at least one node at a site
supporting the application programs, and further forming an
interface between the application programs and a
telecommunications network is provided. The method
includes supplying network management processes operable to
provide inter-node configuration, monitoring and management
functionality, supplying node management processes operable
to provide node initialization, configuration, monitoring,
and management functionality, supplying event processes
operable to provide initialization, termination, and
distribution of tasks in response to predetermined events,
supplying common processes operable to provide a library of
a plurality of programming tcols for the development of the
application programs, supplying communications processes
operable to provide message handling functionality, and
supplying distributed object processes operable to provide
a distributed database repository for object-based
communications.

In yet another aspect of the present invention, a
method of ©providing a software interface between
application programs performing telecommunications
functions and an operating system running on at least one
node at a site supporting the application programs, and
further forming an interface between the application
programs and a telecommunications network is provided. The
method includes providing a network platform manager
operable to remove nodes from service, restore nodes to
service, remove applications from service, and restore
applications to service, providing a network system
integrity mammger operable to monitor the nodes and to
enable failed nodes to recover, providing a configuration

manager operable to interface with a host coupled to the

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

telecom platform, providing a node platform manager
operable to provide management functions for a node,
providing a service manager operable to start and stop
processes at the direction of the node platform manager,
and providing a node system integrity manager operable to

monitor inter-node links.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention,
reference may be made to the accompanying drawings, in
which:

FIGURE 1 is a simplified block diagram of the telecom
platform architecture layers according to an embodiment of
the present invention;

FIGURE 2 is a simplified block diagram of the telecom
platform conceptual components according to an embodiment
of the present invention;

FIGURE 3 is a block diagram of telecom platform's
conceptual components and relationships therebetween
according to an embodiment of the present invention;

FIGURE 4 is a simplified block diagram of the logical
partitioning of the telecom platform according to an
embodiment of the present invention;

FIGURE 5 is a simplified block diagram of the telecom
platform services and their dependencies according to an
embodiment of the present invention;

FIGURE 6 is a simplified block diagram of the physical
partitioning of the telecom platform according to an
embodiment of the present invention;

FIGURE 7A is a block diagram of NetPM's testing flow
according to an embodiment of the present invention;

FIGURE 7B is a block diagram of NetPM's time
synchronization flow according to an embodiment of the
present invention;

FIGURE 7C is a block diagram showing fault detection

and interaction between network management services and

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

node management services according to an embodiment of the
present invention;

FIGURE 7D 1is a block diagram showing interaction
between core services according to an embodiment of the
present inventioh;

FIGURE 8 is a state transition diagram of telecom
platform nodes according to an embodiment of the present
invention;

FIGURE 9A is a simplified block diagram of node start
up process according to an embodiment of the present
invention;

FIGURE 9B 1is a message flow diagram of node
initialization process according to an embodiment of the
present invention;

FIGURE 9C 1is a message flow diagram of node
initialization process according to an embodiment of the
present invention;

FIGURE SD is a message flow diagram of node
initialization process according to an embodiment of the
present invention;

FIGURE 10 is a message flow diagram of service
management interface protocol according to an embodiment of
the present invention;

FIGURE 11 is a simplified block diagram showing Event
Manager uses according to an embodiment of the present
invention;

FIGURE 12 is a simplified information and problem
report (IPR) flow diagram according to an embodiment of the
present invention;

FIGURE 13 is a simplified IPR processing flow diagram
according to an embodiment of the present invention;

FIGURE 14 1is an exemplary IPR view graphical user
interface according to an embodiment of the present
invention;

FIGURE 15 is a simplified block diagram showing data
collection according to an embodiment of the present

invention;

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

FIGURE 16 is a simplified block diagram of the data
collection subsystem according to an embodiment of the
present invention;

FIGURE 17 1s a simplified block diagram of the
threshold counter data communication paths according to an
embodiment of the present invention;

FIGURE 18 is a simplified block diagram of the
threshold counter subsystem according to an embodiment of
the present invention;

FIGURE 19 is a simplified block diagram of the message
handling subsystem according to an embodiment of the
present invention;

FIGURE 20 is a simplified block diagram of message
handling testing according to an embodiment of the present
invention;

FIGURE 21 is a simplified block diagram of the
distributed object messaging environment according to an
embodiment of the present invention;

FIGURE 22 is a simplified block diagram of the
internal debugging and tracing object relations according
to an embodiment of the present invention;

FIGURE 23 1is a simplified block diagram of the
dictionary management system according to an embodiment of
the present invention;

FIGURE 24 1is a simplified block diagram of the
hardware representation of the telecom platform according
to an embodiment of the present invention;

FIGURE 25 1s a simplified block diagram of the
software representation of the telecom platform according
to an embodiment of the present invention; and

FIGURE 26 is a simplified block diagram showing
dynamic mapping of software onto hardware representation of
the telecom platform according to an embodiment of the

present invention.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

A D DESCRI F THE INVENTION

Architecture Qvexview

Telecom platform (TP) 10 of the present invention is
a software system designed to support the development and
execution of distributed, scalable, fault resilient
telecommunications applications 12. Telecom platform 10
provides a unique set of tools developed for a computing
environment such as UNIX. These tools include not only the
set of interfaces, libraries, and executables provided by
the telecom platform development and runtime packages, but
also a set of conceptual components necessary to design and
manage distributed, scalable, fault resilient applications.

As shown in FIGURE 1, telecom platform 10 is comprised
of three distinct software layers 14-16. Layer #1 is a
telecom platform application programming interface (API)
layer 14; layer #2 is a telecom platform services layer 15;
and layer #3 is a systems interface layer 16. Telecom
platform API layer 14 provides the communication methods
for accessing telecom platform services layer 15, which is
comprised of telecommunications middleware services.
Telecom platform services layer 15 is the software layer
that provides the most commonly needed middleware services
for a UNIX-based telecommunications system, for example.
System interface layer 16 is comprised of operating system
(08) API and the network links. System interface layer 16
defines the functions of process and thread management,
memory management, timers, file system, communication,
interface to hardware devices, and other system components.
Telecom platform 10 allows higher level client applications
12 to be decoupled from the operating system and network.
By using telecom platform 10, developers may write
applications without having to master the intricacies of
the underlying services, such as the operating system and
the network, that perform the work on behalf of the
applicatign.

FIGURE 2 1is a block diagram of the conceptual

components associated with telecom platform 10. The

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

smallest conceptual component is a configurable element
(CE) 30. A configurable element 30 is defined by telecom
platform 10 as one or more coples of a UNIX executable
program that is administered by telecom platform 10. For
example, a configurable element may be a link process,
database, graphical user interface, timing process, query
process, error handlers, etc. Configurable elements 30 are
the fundamental building blocks of application programs.
The most basic services that telecom platform 10 provides
to application developers are those service to create,
configure, and monitor configurable elements 30.
Configurable elements 30 can be configured to be started at
specific points during node initialization. The Unix
executable configurable elements represent c¢an be run
multiple times for scalability or redundancy. Thresholds
of the number of instances of configurable elements
required to provide adequate services can be configured as
well as whether or not the instances should be restarted
automatically by the telecom platform 10 in the event of a
process failure.

Configurable attributes of a configurable element
includes Runlevel, which is the level a configurable
element starts at. The RunLevels include PRE_MIN, OS_MIN,
IN SVC, and POST_IN_SVC. PRE_MIN run level specifies that
the configurable element will be created automatically by
a service management subsystem at boot time. PRE_MIN
configurable elements are not monitored by the platform
manager subsystem. OS MIN specifies that the configurable
element will be created when the node is transitioning to
OS_MIN. IN SVC specifies that the configurable element
will be created when the node is transitioning to IN_SVC.
POST IN SVC specifies that the configurable element will be
created when the node transitions to the IN_SVC state.
Another configurable attribute is NumberOfInstances, which
Specifies how many copies of the executable is to be run.
InServiceThreshold is a configurable attribute that

specifies how many out of NumberOfInstances is required to

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

be up and running to make the configurable element's state
be ENABLED. If the number of instances drop below this
threshold, the entire configurable element or all the
instances of the configurable element are removed. Another
attribute of the configurable element is the
HeartbeatSchedule which specifies the schedule for
heartbeat messages to be sent to a configurable element.
Each configurable element also has an AuditSchedule, which
specifies the schedule for audit messages to be sent to the
configurable element.

A configurable element set (CESet) 26 is defined by
telecom platform 10 as a group of configurable elements
designed to be deployed together on one or more nodes 24.
A configurable element set 1is a distributable component.
Telecom platform 10 may not manage configurable element
sets 26 directly, but does support their creation and
deployment. Configurable element sets 26 can be viewed as
being the distributable and/or replicable components of an
application 28.

An application 28 is defined as a group of
configurable element sets 26 that fully define all of the
configurable elements 30 of a distributed program. Telecom
platform 10 provides software to manage applications 28
within a site 20. Defining the configuration of
applications in terms of their distributable components
allows the software for a distributed application to be
defined independently of the hardware on which it will be
run. An application's configurable element sets will at
some point in time be deployed to the nodes 24 of a site
20. When that occurs the scale and fault resilience of the
application 28 will be determined based on the number of
nodes used to support each configurable element set.

A node 24 is defined as an instance of a supported
operating system on which telecom platform 10 runs.
Telecom platform 10 provides software that manages
processes on nodes 24. Nodes 24 may be fault tolerant or

non-fault tolerant, single or multi- processor. Telecom

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

platform 10 uses the services of the cperating system and
is generally unaware of the hardware it is running on.
Telecom platform requires very 1little configuration
information for a node 24. Nodes are configured into the
system by providing their name and unique device
identifiers.

Nodes 24 have operating states, supported by telecom
platform, that describe the ordering o¢f configurable
elements started within them. The operating states
includes HALTED, PRE_MIN, OS_MIN, IN_SVC, and POST_IN_SVC.
The HALTED node state indicates that the operating system
of the node has been shut down. The PRE_MIN state is used
to start configurable elements that need to be started
before configurable elements in the OS_MIN states are
started. Telecom platform starts all configurable elements
that are configured to run at PRE_MIN for that node first,
then immediately begins running configurable elements that
are configured to run in the OS_MIN state. Configurable
elements that are configured to run at PRE_MIN do not
directly effect the state of the node. The OS_MI node
state coordinates all configurable elements configured for
the OS_MIN run level will be started to bring the node to
the OS_MIN state. All configurable elements configured for
the OS MIN node state achieve their configurable run-level
transition state before the node 1is said to have
transitioned to OS_MIN. Once the OS_MIN node state has
been achieved, if any configurable element changes its
state to be below its run-level transition state, the
telecom platform will downgrade the node to the HALTED node
state. A shut down node may recover automatically. The
IN SRV node state coordinates configurable elements
configured for the IN_SRV run-level. All configurable
elements configured for the IN_SRV node state achieve their
configurable run-level transition state before the node is
to have transitioned to IN_SRV. Once the IN_SRY node state
has been achieved, if any configurable element changes its

state to be below its run-level transition state, the

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

10

telecom platform will downgrade the node to the 0S MIN node
state. Automatic recovery of a node may occur if the node
downgrade was not originated manually. The POST_IN SRV
node state is used to configure configurable elements that
are to be started immediately after a node has transitioned
to IN_SRV. Once a node has achieved IN_SRV, the telecom
platform creates each POST_IN_SRV configurable element.
State changes for POST IN SRV configurable elements do not
affect node state, and may be started and stopped
repeatedly. The process of stopping a POST _IN_ SRV
configurable element does not cause the node to downgrade
to a lower node state.

A site 20 is defined by the telecom platform to be a
group of nodes that distributed applications can be
deployed across. Telecom platform provides a telecom
platform application known as the platform manager that
manages nodes 24 within a site 20. A site may be made up
of at least one node. In multi-node sites, the platform
manager application may run as an active/standby
distributed application in two of the nodes. In single
node sites, the platform manager application runs in the
single node along with user defined applications, but runs
without the fault handling capabilities provided by a
standby node. Administration of a site is provided through
the platform manager.

A processor service group (PSG) 22 is defined as a
group of nodes that a specific configurable element set 26
is deployed to for redundancy. Telecom platform 10
provides software applications to manager processor service
groups within an application. Processor service groups
support redundancy by allowing the telecom platform user to
identify the number of nodes a configurable element set is
required to run on to provide an adequate level of service.
As the state of the nodes or the configurable element sets
running on them change, telecom platform 10 verifies that,
the appropriate level of service is maintained or it will

change the application status as configured.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

11

FIGURE 3 is a diagram illustrating a system 40 design
employing the conceptual components of telecom platform 10
which are mapped onto hardware components.

In termg of hardware configuration, a node 1is a
computer processor within a network (such as ethernet) that
can act either as a client or a server. Each node has a
single instance of the operating system running on it. The
processors within a node cannot run independently from one
another because of their dependence on the operating
system. Each node at a site can be classified as a
platform manager or an application node. A site can
consist of one node o1r a grouping of nodes that are
connected to a host. The platform manager node has a
redundant mate. The platform manager node and its mate may
operate in an active/standby mode or a load-sharing mode.

System 40 has eight nodes, which includes two platform
manager nodes (active 42 and standby 43) and six
application nodes 44-49. An application 50 for handling
telephone calls based on the time the call is placed, or
time dependent zrouting, is deployed across the nodes.
Configurable element sets 52 and 54 of application 50 are
the distributed components which supply the time dependent
routing functionality. Each configurable element set 52
and 54 contain the software processes of the UNIX
executable programs or configurable elements for a specific
time zone. As shown, application 50 does not have to
reside on a single application node 44-495. It may be
desirable to map configurable element sets onto different
nodes. This makes it possible to scale the application by
increasing the number of nodes to which the configurable
element sets are configured.

The telecom platform internal architecture is
described from both the logical and physical partitioning
perspectives. The logical partitioning decomposes the
telecom platform into distinct functional areas as shown in
FIGURE 4. Each functional area contains a cohesive group

of classes, which together provide one particular system

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

12

function. The physical partitioning describes the concrete
software and hardware decomposition of the system's
context. The services provided by telecom platform 10 may
be partitioned into two groups: application services 60 and
core services 62. Application services may include
services that perform information and problem report
(IPR) /falarm 64, statistics 65, dictionary 66, graphical
user interface (GUI) 67, and host maintenance simulator
(HMS) . IPR/alarm services 64 provide a standard mechanism
to inform the system user of error conditions and other
pertinent system information. Statistics services 65
provides the methods to access system-wide measurement data
and to generate reports based on the collected data.
Dictionary services 66 provide classes that are designed to
support data storage (persistent, shared or private) and
access to the data. Graphical user interface services 67
provide primitive abstractions for building GUI
applications, and access to system utilities and to the
system itself, e.g., xterm window and operating system
utility programs. Host maintenance simulator services 75
provide a method of interfacing with the telecom platform
when there is only one node within the system or when there
is not a host to which to connect. It is through the host
that control and operation of the platform is made
possible.

Core services 62 may include services that perform
network management 68, node management 69, distributed
object 70, communications 72, common functions 73, and
event handling 74. Network management services 68 directs
network activities, e.g., configuration of nodes and
network-level fault processing. Node management services
69 directs node-level processes, e.g., node status
reporting and link management. Distributed object services
70 provide a distributed database repository for object-
based cpmmunication in a multi-processing environment.
Communications sexvices 72 provide the mechanism for

handling messages across interprocessing links external to

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

13

the platform. Common serxrvices 73 provide a library of
programming tools to aid in the rapid development of
processes designed to run on or within the telecom
platform. Event services 74 provide the capability to
initiate, terminate, and/or distribute specific actions
significant to a task.

As a minimum, telecom platform provides all of the
core services. High level applications use these services
to accompligsh the lower level functions.

FIGURE 5 further shows the telecom platform services
and their dependencies. The developer accesses all of the
core and application services through telecom platform
application program interfaces 14. The developer may also
access the operation system, network, and third party
software/hardware if the need arises. Interprocess object-
based communication is handled by communication services
72. Most of the core and application services dependent on
communication services 72 and common services 73 to perform
their respective functions. Graphical user interface
services 67 may only be dependent on communication services
72. The arrows in FIGURE 5 indicate the dependency
relationships between the services.

FIGURE 6 is a diagram of the physical partitioning of
telecom platform 10 which includes an application layer 80
and a core layer 82. Core layer 82 containing core
services 62 exists for every instance of a telecom
platform. Core layer 82 contains telecom platform API 14,
interprocess communication mechanisms, event mechanisms,
and platform management. Telecom platform applications
layer 80 has both vertical and horizontal partitions.
Vertically, each telecom platform application process is
classified as either a part of a main set of applications
84 or not. Non-main set processes are dependent on the
main set processes. Horizontally, telecom platform
applications 80 are categorized as required or optional.
Optional applications may include an IPR/alarm package 86,

a data collection package 87, a dictionary management

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

14

system package 88, and a host maintenance simulation
package 89.
The following 1s a more detailed description of

Telecom platform services.

Network Management Services

Network Management services 68 provides a common
administrative view of the network element. It is
responsible for implementing high level operations on the
network element nodes such as removing server nodes from
service, restoring server nodes to service, removing
applications from service, restoring applications from
service, enabling or disabling applications, maintaining
status of distributed applications, maintaining server node
state and status, and reporting application status changes.
Network management services 68 includes a network platform
manager (NetPM) , network system integrity subsystem
(NetSI), and configuration manager (ConfigMgr). FIGURE 7A
is a block diagram showing an active platform manager node
100 with a corresponding or mated standby platform manager
node 102. Each platform manager node includes a network
platform manager 104, a network system integrity subsystem
106, and a configuration manager 108. A platform manager
network test driver 110 provides network level testing.

Network Platform Manager (NetPMMain)

The class name for the network platform manager is
NetPM. NetPM 1is vresponsible for providing management
functionality of the platform resources. The platform is
a distributed system consisting of multiple nodes or
servers which provide processing power for specific
services, such as calling card or credit card validation.
The service provided by a server is determined by the
configurable elements residing on the node. NetPM manages
all the configuration data associated with the platferm.
Configuration data includes information about the hardware,

such as the TCP/IP address of a server, status information,

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

15

such as server and query status, software configuration
information, such as application type, node name, and
information relating to the individual configurable
elements.

NetPM maintains the following configuration
information. This information is collected by NetPM during
its initialization.

. Configurable element descriptor information -

This provides configuration information for each
Configurable element of the platform. NetPM
retrieves these from a disk file containing the
information on configurable elements of different
types.

. Application information - This provides
configuration information about each application
(service), which can be used in calculating an
application's status. NetPM retrieves this
information from a disk file containing the

information for all the applications in the

platform.
. Processor service group information - This
provides configuration information about

Processor service groups, which can be used in
calculating the Processor service group status
(Processor service group designates group of
processors serving the same application, i.e.,
CCDh, CCL). NetPM retrieves these from a disk
file containing the information for all Processor
service groups in the platform.

. Server information - This provides specific
information about all servers in the platform.
NetPM requests and retrieves this information
from the ConfigMgr. ConfigMgr provides NetPM
with the server information on platform manager
nodes first. Afterwards if ConfigMgr determines
that the current server is the active platform

manager, it provides the local NetPM with the

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

16

information on the remaining servers in the
platform. Otherwise (standby platform manager),
NetPM will retrieve those information from its
mate, and not from the ConfigMgr.
If an error is detected while collecting these information,
NetPM issues appropriate IPRs and exits.

NetPM uses a NetMAP object to manage all the
configuration data. NetPM also uses a persistent
dictionary to retain server status, gquery status, and
scheduled actions information across platform manager
resets. A Disk File Dictionary object is used to manager
this dictionary. NetPM is responsible for maintaining the
integrity of the configuration data between the two
platform manager servers. NetPM uses a persistent
dictionary, database equalization, and auditing to maintain
the integrity of the data.

Application status 1s determined based on the
processor gervice group status. The following criteria is

used in determination of the processor service group

status:

. PSG_DISABLED - At least a set number of servers
in the processor service group are in disabled
state.

o PSG_INACTIVE - At least one server in each
processor service group is in standby state, and
none is in active state.

. PSG_ACTIVE_MINIMAL - Only certain number of
servers 1in the processor service group are in
active state.

. PSG_ACTIVE - A set number of servers in the

processor service group are 1in active state
(Note: This number will be greater than the
number of servers that need to be active for
PSG_ACTIVE_MINIMAL.)

ang the application status may be derived using the

following criteria:

10

- 15

20

25

30

35

WO 99/30514 PCT/US98/26439

17

. AP DISABLED - At least a set number of processor
service groups for the given application have
status of PSG_DISABLED.

. AP _INACTIVE - At least one processor service
group for the given application has status of
PSG_INACTIVE, and no processor service group has
status of PSG_ACTIVE.

. AP_ACTIVE_MINIMAL - A set number of processor
service groups for the given application have
status of PSG_ACTIVE MINIMAL or higher
(PSG_ACTIVE) .

. AP_ACTIVE PARTIAL - A set number of processor
service groups for the given application have
status of PSG_ACTIVE MINIMAL or higher
(PSG_ACTIVE) (NOTE: The number of processor
service groups required for AP_ACTIVE_PARTIAL
state 1s greater than required number of
processor service groups for AP _ACTIVE _MINIMAL) .

. AP _ACTIVE - A set number of processor service
groups for the given application have status of
PSG_ACTIVE (NOTE: The number of processor
service groups required for AP ACTIVE stat 1is
greater than required number of processor service
groups for AP_ACTIVE PARTIAL) .

NetPM keeps track of the status changes on each server
node, and as it gets them it determines the status of the
processor service group and in case of a change, determines
the new application status for the node, and informs
ConfigMgr of these changes.

NetPM provides solicited and autonomous updates on
application status. For autonomous updates, the
application process first registers a function with NetPM
to receive updates for a particular application type (CCD
or CCL). Whenever NetPM receives a change of server or
query status from NodePM, the application status 1is

calculated and the registered function is called with the

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

18

old and new application statuses. Application status can
also be solicited, during which NetPM will return the
latest calculated value of application status saved in its
NetMAP to the requesting process.

NetPM provides, partially through the use of two alias
objects, two sets of routing options to other processes
wishing to communicate with NetPM. NetPM provides a local,
and a global active-standby option. In the local option,
all NetPM client requests are sent to the NetPM server
object in the same node as the client object. In the
global active-standby option, all NetPM client requests are
sent t£o the globally (i.e. possibly inter-nodal) available
active NetPM server object.

NetPM provides a set of reader, and writer, functions
for a lot of the Server configuration data. These include
reader/writers for the schedule action data, the platform
manager active status data, the server status data, etc.
NetPM provides no direct read/write operations for the
configurable element description data.

NetPM also provides a function to initialize the
majority of the Server configuration data. This function
expects a ServerInfoMsg object ag input.

NetPM provides a set of functions which cause a
specific configuration action (such as graceful halt,
immediate halt, graceful downgrade, and restore), to occur
on a specific Server.

NetPM provides a function where the server status can
be changed on a specific server.

NetPM provides a function to enable, and a function to
disable the query processing on a specific server.

NetPM provides several functions which "report" server
status, and query status changes. These routines save the
new status information in NetMAP, notify the ConfigMgr
software of the change, and broadcast the change to all the
NodePM software in the platform.

NetPM is also responsible for time synchronization

within the server network. Time synchronization consists

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

19

of three major parts, as shown in FIGURE 7B. The first
part is for active platform manager 100 to equalize its
local time with the time of the host. This includes
converting the host's (110) time into a usable form and
informing the NodePMs 112 on platform manager nodes 100 and
102 to perform an adjtime() function to adjust their clocks
in line with host 110. NetPM 104 also informs the host
ticker class of the new host time when it receives the time
message. An xntp process 120 then synchronizes the
application nodes' (121) time with the time of the platform
manager nodes 100 and 102. Each of the platform manager
nodes 100 and 102 are configured as xntp master sources of
time. The xntp daemon slaves 122 on application nodes 121
choose one of the master xntp daemons 120 on platform
manager nodes 100 and 102 to keep in synch with. Finally,
whenever an unsolicited Set Time message is received from
host 110, the network's time is the same as the received
time. |

Lastly, NetPM 104 provides a function which provides
a newly booted node with pertinent server configuration
data of all the servers in the platform. NetPM 104 is a
configurable element. NetPM 104 provides the
unencapsulated operations: Remove, Restore, and GetStatus
which NodePM requires to «control NetPM's execution.
NetPMTimerHandler is called when the audit timer fires. It
aborts the provide service loop and calls the NetPM
function SettimeToVerify to start the audit.

NetPM 104 is an object with its own thread of control.
After building up its NetMAP lists, NetPM 104 goes into an
infinite loop waiting for requests.. NetPM 104 notifies
ConfigMgr 108 whenever there is a change in the service or
query status of a server. NetPM 104 also sends these
status changes to all the NodePMs 112 in the platform.
NetPM 104 notifies the specific NodePM 112 to enable, or
disable, query processing. NetPM 104 provides service
status synchronization functionality. NetPM 104 builds up

the IPU information for the servers in the platform and

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

20

passes this information to the specific NodePM 112 in the
BootNotify member function. NetPM, in all the
configuration requests for degradation of service (i.e.
GraceDown, ImmedDown, GraceHalt, and ImmedHalt), notifies
the specific NodePM 112 of the desired state of the server.
NetPM 104 does several things when a server restore is
requested. First, NetPM 104 obtains the current status of
the server from the specific NodePM 112. Second, if the
returned status is out-of-service/minimum-software, NetPM
104 sends the specific NodePM 112 the relevant
NodeSpecInfo. Third, NetPM 104 sends the relevant
configurable element descriptor information to the specific
NodePM 112. Lastly, NetPM tells the specific NodePM to

restore to service.

Network m In rit NetSTMaj

The Network System Integrity (NetSI) subsystem 106
provides monitoring and recovery operations for the network
element. It is responsible for implementing network
monitoring and recovery. Operations implemented by Network
System Integrity include:

- platform manager active/standby status
monitoring
- node failure report correlation

- failed node recovery actions

The class name of Network System Integrity is NetSI. NetSI
106 manages network system integrity for the platform
manager. NetSI 106 receives notifications of server
downgrades and communication faults from the NodeSI on the
faulted node. NetSI 106 determines what action should be
taken based on the data given by NodeSI. If the node
indicates a downgrade, NetSI will take the appropriate
action to downgrade the node from the network level to the
desired downgraded state. If the node indicates a

communication fault, NetSI 106 will determine what node (if

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

21

any) 1is at fault from data received previously and will
take action to downgrade the faulted node if necessary.
When NetSI determines that a downgrade is required for a
node, NetSI calls the appropriate NetPM operation to
perform the downgrade. If a change in active status is
required, NetSI calls the appropriate NetPM operation to
set the active status. After NetPM is called to perform
the downgrade, NetSI notifies ConfigMgr that the status is
changing for a particular node. This allows the host to be
informed immediately that a node 1is being downgraded.
NetSI then writes an entry to the network configuration
report indicating the status change and reason for it.
NetSI downgrades nodes to the legal service state based on
the current state of the node.

NetSI contains a communication fault list. This list
holds the reporting server node name and problem server
node name of each communication fault report received.

When a communication fault report is received, the list is

searched for another report about the problem node. If not
found, the fault information is added to the list. NetSI
also contains a down status info list. When NodePM

indicates that a node is out of service and the NetPM
status does not indicate the node is halted, a down status
info entry is created with the node name of the halted IPU.
A timer is created and the down status info is added to the
list. If NodePM later indicates a higher status for that
node (before the timer expires), the down status info entry
is cleared from the list and no further action is taken.

NetSI routinely audits the status conditions of both
PMs. If invalid conditions are present, NetSI attempts to
correct the situation by setting the active status to the
correct state. Other processes can also request NetSI to
audit the platform manager status conditions.

NetSI operates with a "send to both" load shared
concept. ,If both platform manager nodes are operational,
each NetSI process on each platform manager node will

receive the NodeSI request. Each NetSI process will

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

22

determine if it should handle the request based on the
platform's active/standby state and faulted server. The
active platform manager's NetSI process will usually take
the reguired action while the standby platform manager
discards the information. However, if the faulted node is
the active platform manager, the standby platform

~manager (1f wvalid) will set itself to active and take the

request action to downgrade the other platform manager
node.

Each time a NetSI operation is called, NetSI first
determines if it is the active or standby platform manager.
If active, ©NetSI will process the request for all
conditions except when the target node is itself and the
mate is in service. If in standby, NetSI will discard the
reguest for all conditions expect when the target node is
the mate.

During initialization NetSI requests the mate's node
name and server descriptors of its own server and mate
server from NodePM. Before requesting the information,
NetSI polls for the status of NodePM, and will not request
the node name and server descriptors until NodePM is read
to provide them. NetSI will not be ready to provide
service until this information is received properly.

NetSI uses the command line parameter DWN_RPT_FILE to
get the name of the network configuration (downgrade)
report file name. If this parameter is not specified, no
report entry is made of the downgrades.

Referring to FIGURES 7C and 7D, process interaction
between node management and network management is shown.
Constant monitor (ConMon) 1232 is an instance of an object
running on an application node 136. ConMon 132 detects a
faulted process or a failed configurable element, it
notifies a service management process program 134. Service
management process 134 determines i1if the configurable
element failure causes the process to fall below its
threshold level. If it does not, the service management

process 134 restarts the configurable element. However, if

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

23

the configurable element does fall below its threshold
level then service management process 134 generates a
configurable element status change message and forwards the
notification to NodeSI 130. NodeSI forwards the
configurable element status change to NodePM 112. NodePM
112 determines whether the configurable status change
affects the run level of the node, which could cause a
downgrade of the node. If the node is to be removed,
NodePM 112 provides instructions to service management
process 134 to remove all of the configurable elements
necessary to achieve the downgraded state. NodePM 134
notified the NetPM 104 of the node status change. NetPM
104 performs a calculation to determine if the node status
change affects the processor service group and application
status. NetPM's calculation also determines if an auto-
action, such as removing a node from in-service to min-set
and restoring it again, should be performed on the node.
If the node is to be removed, then the node status change
is forwarded from NetPM to ConfigMgr 108. ConfigMgr
notifies host 140 of the state change for the node,
processor service group, and application. These state
changes can be displayed or printed in a report.

In particular, each NetSI determines if it should
handle the downgrade request. If so, the target server's
status is retrieved. 1If the target server is not already
halted, the server is downgraded to the appropriate status
based on the IPU status. If the IPU status is out of
service, NetSI calls NetPM's immediate halt operation to
either auto halt or manually halt the target node. If the
IPU status is Out of service minimal (OS-MIN), NetSI calls
NetPM's immediate downgrade operation to downgrade the
target node to OS-MIN. If the IPU status is in service
disabled, NetSI calls NetPM's disable query operation to
disable query status for the target node. In all cases,
NetsSI updates the active status if the target node is the
active platform manager. Also, if the target node is part

of the local site, NetSI informs the host via ConfigMgr

10

15

20

25

30

WO 99/30514 PCT/US98/26439

24

that a status change is occurring and initiates recovery of
the processor service group (through ConfigMgr) if it
determines that the processor service group of the target
server should be recovered. NetSI then writes an entry to
the network configuration report file indicating the status
change is occurring due to the node reporting a fault.
NodeSI informs NetSI of communication faults that
occur between two nodes. NetSI stores or takes action on
the fault based on previous information receive (if any).
Each NetSI determines the status of the reporting and
problem nodes. If either server is halted, the
communica-ion fault report is discarded since the integrity
of the data cannot be assured. If neither server is
halted, the Communication Fault List 1is searched for
another report on the problem ncode. If no report on the
problem node is found, a Communication Fault List entry is
added to the List with the server information. If ancther
report of the problem node is found and another reporting
server has reported it, the problem server is set up for
downgrade processing. Once a decision 1is made about
whether the server should be downgraded, NetSI determines
if it should handle it (based on its active state and
whether or not the target server is itself.) If it should
handle the downgrade, NetSI calls NetPM's Immediate Halt
operation to either Auto Halt or Manually Halt the problem
node. If the server to be halted is the active PM, NetSI
updates the active status accordingly before halting the
node. Also, if the target is part of the local site, NetsSI
informs the Host via ConfigMgr that a status change is
occurring and initiates recovery of the Processor service
group (through ConfigMgr) if it determines that the
Processor service group of the target server should be
recovered. NetSI also writes an entry to the network
configuration report file indicating the halt is occurring

due to a communication fault.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

25

Configuration Manager (ConfigMgr)

The Configuration management subsystem (class name:
ConfigMgr) provides the control interface between the SCP
Host and Server components. All operations that can be
performed on the server network are defined in this
interface. The Configuration Management subsystem
implements the following features:

- Control Message Interface between Host and
Servers

- State Machine for wvalid operations

- Drives Network Management with requests.

- Controls operation timing/timeouts.

ConfigMgr manages server configuration control for the
platform manager. ConfigMgr -receives Host messages
transmitted on the CONFIGCTL, MAINT, APPLCTL and ROUTINGCTL
logical links and processes each based on its message id
and type. If the Host requires a response or report to be
sent, ConfigMgr determines the necessary response and

retrieves the necessary report information and sends it

back to the Host. ConfigMgr handles the following
messages:
. APPL_STATUS_MSG
. ASPEC_MSG
. CONFIGURE_SERVER_MSG
. PSG_INFO_MSG
. PSG_STATUS_MSG
N QUERY_PROCESSING_MSG
. RESET SERVER_MSG
. ROUTING INFO_MSG
. SCHED_ACTION_CTL_ MSG
d SERVER_INFO_MSG
i SERVER_STATUS_MSG
. TEST_SERVER_MSG

TIME_MSG

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

26

ConfigMgr also provides operations to the platform
manager for retrieving server and time information from the
host . It also provides operations to notify the host of
server status changes. In processing host command
messages, there are times when ConfigMgr must wait for a
response from the host or for a status change from a
particular server. ConfigMgr uses a non-blocking
philosophy in respect to these waits. Instead of stopping
and waiting for the event to occur, ConfigMgr saves the
desired response or status on a PendingQueue and continues
normal processing of another Host message or providing
service to a client. When the desired response or status
occurs, the appropriate procedure is called to resume
processing of the host commanded message. If the desired
response does not arrive or desired status does not occur
within the specified time limit, a fail procedure is called
to clean up processing of the Host commanded message and
issue IPRs as needed.

In addition to processing host command messages,
ConfigMgr is required to notify the host when a status
change occurs. When ConfigMgr is notified of a status

change, it checks the status pending queues to determine if

it is waiting for the sgstatus c¢hange to occur. If so, the
pending queue success operation is performed. Otherwise,
ConfigMgr sends server status messages to the host. In

processing host response messages, ConfigMgr checks the

host response pending queue (HostPendQueue) to determine if

it is waiting for the response. If so, the pending queue
success operation 1s performed. Otherwise, ConfigMgr
discards the response message from the Host. When a

platform manager node is booted to 0OS-MIN state, it audits
its mate and determines the status of the mate. In the
event that no mate platform manager node is present, the
mate status is automatically set to halted. Similar audits
are done on service server nodes (nodes other than PM) to

determine their status.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

27

ConfigMgr has a registration capability where a
subsystem can register to provide routing information for
a particular application. When the Host requests routing
information about an application, ConfigMgr makes a request
to the appropriate registered subsystem (if one exists) to
provide the routing info.

Configure Server Messages (ConfigServerMsgs) require
special processing due to the nature of the services that
are performed (i.e. halts, downgrades, restores, and
boots) . Since host messages are sent to both platform
manager servers, care must be taken to assure that only one
platform manager node processes the request. This requires
checking the server state of the platform manager node and
its mate. There are different actions to be taken based on
the server stats of the platform manager nodes and whether
the ConfigServer reguest 1s for a platform manager node,
its mate, or a service server. Two finite state machines
(PMCfgSvrFSM and SvcCfgSvrFSM) manage all the different
state driven actions.

PMCfgSvrFSM is the finite state machine that handles
the restores, halts, resyncs, downgrades, and boots for a
platform manager application server. This machine
processes a regquest based on whether the request is for
itself or its mate, its own status, its mate's status, and
the event requested (halt, downgrade, restore, etc.) The
platform manager server states checked are: Halted (Auto),
Halted (Manual), XOS-MIN, AOS-MIN (Auto), MOS-MIN (Manual),
and In-Svc. If In-Svc, the active/standby status is
checked to determine i1f the server is active or standby.
Valid events are Restore, Graceful Halt, Immediate Halt,
Graceful Downgrade, Immediate Downgrade, Graceful Boot,
Immediate Boot, and Host Resync.

The event is important for determining which platform
manager node will process the request. If a restore is
requested, normally the platform manager node which is
being restored will process the restoration (i.e. a

platform manager node will restore itself). Processing a

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

28

restore request a platform manager serxrver that is halted,
the halted server's mate (if able) will send a Denial
response back to the host. If any Halt, downgrade, or boot
is requested for a platform manager node, the platform
manager node's mate will process it, unless the mate is
halted. When the mate is halted the platform manager node
will process the halt, downgrade, or boot for itself.
Processing a halt, downgrade, or boot may involve actually
performing the requested action or sending a Denial
response back to the host. If a halt, downgrade, or boot
request 1is not denied, the host considers the action
successful.

When a platform manager node has to process a boot for
itself, the platform manager node calls the GraceHalt or
ImmedHalt operations (based on Boot type) of NetPM to bring
itself into a halted state. Processing is then complete
for this node since it is being brought down to a halted
state. (The host will initiate the reset and boot of the
server.) A force flag is checked when a halt, downgrade,
or boot 1is requested for the last In-Service platform
manager node. If the force flag is not set, the request
will be denied with a response of "DENIED-LAST AMP". If
the force flag is set, the halt, downgrade, or boot will be
performed on the last In-Service platform manager node.

If a Host Resync is requested for a platform manager
node, the target platform manager server's mate will
process the request unless the mate is halted. If the
target platform manager server's mate 1is halted, the
platform manager node for resync will process the request.
Processing the request involves changing the server status
from XOS-MIN to AOS-MIN or MOS-MIN or denying the request
if the current status is not XOS-MIN.

SvcCfgSvrFSM is the finite state machine that handles
the restores, halts, resyncs, downgrades, and boots for a
Service application server. This machine processes a
request based on the state of the platform manager node

performing the action, the state of the service server

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

29

being worked on, and the event requested (halt, downgrade,
restore, etc.) The service states checked are Halted
(auto), Halted (manual), XOS-MIN, AOS-MIN (auto), MOS-MIN
(manual), and InSvc. Valid events are Restore, Graceful
Halt, Immediate Halt, Graceful Downgrade, Immediate
Downgrade, Graceful Boot, Immediate Boot, and Host Resync.

The active platform manager node (0S-MIN or In-
Service) will process the configure server request for a
Service server. A boot, halt, resync, or downgrade is
allowed on a service server as long as one platform manager
is at least OS-Min. A restore for a service server is only
allowed when at least one platform manager is In-Service.
If neither platform manager node is In-Serxrvice, the
platform manager node that is active will send a DENY-AMP
not In-Service response back to the host. If a halt,
downgrade, or boot zrequest 1is not denied, the host
considers the action successful.

A force flag is checked when a halt, downgrade, or

boot is requested for the 1last In-Service node of an

application. If the force flag is not set, the request
will be denied with a response of "DENIED-LAST SERVER IN
Processor service group PROCESSING QUERIES". If the force

flag is set, the halt, downgrade, or boot will be performed
on the last In-Service node of the application.

An Under Configuration flag is checked whenever a
configure event {(except Immediate Halts) is processed. If

the Under Configuration flag is set, the request will be

denied with a response of "DENIED-SERVER UNDER
CONFIGURATION". ConfigMgr sets and c¢lears the Under
Configuration flag during event processing. The other

messages (i.e. ServerInfoMsg, ServerStatusMsg, TimeMsg,
etc.) do not require finite state machines.

When a restore request is not denied, ConfigMgr sets
the UnderConfig flag for the server, sends a
ConfigServerMsg "Action Initiated" RESPONSE to the Host,
and calls RestorelISV operation of NetPM to restore the

server to In-Service. ConfigMgr then suspends restore

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

30

processing and sets up a Server Status PendingQueue entry
for the server to become In-Service. Restore processing
will not continue until ConfigMgr is informed that the
server status 1s In-Service or the timer expires. When
ConfigMgr is informed of the server status change to In-
Service, Restore processing is continued by checking the
server query status. If the server's query status is
DISABLED_ SERVER_0OS and the number of active servers is
less than the processor service group active server count,
ConfigMgr calls EnableQuery operation of NetPM to enable
the server's query status and sets the current query status
to Pending. ConfigMgr then sends server status messages to
the host informing about server and query status change.
A.QueryStatﬁs PendigQueue entry is set up for the server's
gquery status to become Enabled. Processing 4is then
suspended until the query status becomes enabled or the
timer expires. When ConfigMgr is informed of the query
status change to Enabled, Restore processing is continued
with the sending of server status messages and clearing of
the under configuration flag for the server.

Restore fail processing is initiated if the timer
expires before the server status changes to In-Service or
the requested server information for the other applications
is never received. Fail processing involves gracefully
downgrading the server to OS-MIN, issuing an IPR, and
clearing the under configuration flag for the server. If
the timer expires before the gquery status changes to
Enabled, Restore processing is continued with setting the
Query Status to Disabled, gracefully downgrading the server
to OS-MIN, sending server status messages, issuing an IPR,
and clearing the under configuration flag for the server.

When a Graceful Halt request is not denied, ConfigMgr
sets the UnderConfig £flag for the server, sends a
ConfigServerMsg "Action Initiated" RESPONSE to the Host,
and calls GraceHalt operation of NetPM to halt the server.
If the node is not already halted, ConfigMgr then suspends

halt processing and sets up a Server Status Pending Queue

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

31

entry for the server to become Halted. It then makes an
entry to network configuration report indicating a halt was
requested by the host. halt processing will not continue
until the ConfigMgr is informed that the server status is
Halted or the timer expires. When ConfigMgr is informed of
the server status change to a halted state, halt processing
is continued with the sending of server status messages and
clearing of the under configuration flag for the server.
If the timer expires before the server status changes to
Halted, Halt fail processing is initiated. Fail processing
involves issuing an IPR and clearing the under
configuration flag for the server.

When an Immediate Halt request is not denied,

ConfigMgr sets the UnderConfig flag for the server, removes
all pending server status changes for this server from the
status pending queue, and calls ImmedHalt operation of
NetPM to halt the server. If the node is not already
halted, ConfigMgr suspends halt processing and sets up a
Server Status Pending-Queue entry for the server to become
Halted. It then makes an entry to the network
configuration report indicating a halt was requested by the
Host. Halt processing will not continue until the
ConfigMgr is informed that the server status is Halted or
the timer expires. When ConfigMgr is informed of the
gerver status change to a halted state (or the node is
already halted when the halt was issued), halt processing
is continued with the sending of server status messages,
sending of a ConfigServerMsg "Successfully Completed"
RESPONSE to the Host, and clearing of the under
configuration flag for the server.
If the timer expires before the server status changes to
Halted, Halt fail processing is initiated. Fail processing
involves issuing an IPR, sending a ConfigServerMsg "Action
Failed" RESPONSE to the Host, and clearing the under
configuration flag for the server.

When a Graceful Downgrade request 1s not denied,
ConfigMgr sets the UnderConfig flag for the server, sends

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

32

a ConfigServerMsg "Action Initiated"” RESFONSE to the Host,
and calls GraceDown operation of NetPM to downgrade the
server. If the node is not alrxeady at the desired
downgraded state, ConfigMgr then suspends downgrade
processing and sets up a Server Status PendingQueue entry
for the server to become OS-MIN. It then makes an entry to
network configuration report indicating a downgrade was
reguested by the Host. bowngrade processing will not
continue until ConfigMgr is informed that the server status
igs OS-MIN or the timer expires. When ConfigMgr is informed
of the server status change to a 0S-MIN state (or the node
was already at that state), downgrade processing is
continued with the sending of server status messages and
clearing of the under configuration flag for the server.
If the timer expires before the server status changes to a
0S-Min state, downgrade fail processing is initiated. Fail
processing involves issuing an IPR and clearing the under
configuration flag for the server.

When an Immediate Downgrade request is not denied,
ConfigMgr sets the UnderConfig flag for the server and
calls ImmedDown operation of NetPM to downgrade the server.
If the node is not already at the desired downgraded state,
ConfigMgr then suspends downgrade processing and sets up a
Sexrver Status Pending Queue entry for the server to become
OS-MIN. It then makes an entry to network configuration
report indicating a downgrade was requested by the Host.
Downgrade processing will not continue until ConfigMgr is
informed that the server status is O0OS-MIN or the timer
expires. When ConfigMgr is informed cf the server status
change to a to 0S-MIN state (or the node was already at
that state), downgrade processing is continued with the
sending of server status messages, sending of a
ConfigServerMsg "Successfully Completed" RESPONSE to the
Host, and clearing of the under configuration Flag for the
server.

If the timer expires before the status changes to a
OS-MIN state, downgrade fail processing is initiated.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

33

Failure processing involves issuing an IPR, sending a
ConfigServerMsg "Action Failed" Response to the Host, and
clearing the under configuration flag for the server.

When a Graceful or Immediate Boot request is not
denied, ConfigMgr sets the UnderConfig flag for the server
and sends a ConfigServerMsg "Action Initiated" RESPONSE to
the Host. ConfigMgr checks the server status for the
server and calls GraceHalt or ImmedHalt operation of NetPM
if the serxver 1is not at a halted state. If a halt
operation 1is called, ©processing is suspended until
ConfigMgr is informed that the server status is halted or
the timer expires. It then makes an entry to network
configuration report indicating a boot was requested by the
Host.

When ConfigMgr is informed of the server status change
to a OS_MIN state (or the node was already at that state),
downgrade processing is continued with the sending of
server status messages, sending of a ConfigServerMsg
"Successfully Completed" RESPONSE to the Host, and clearing
of the under configuration flag for the server. If the
timer expires before the server status changes to a 0S-MIN
gstate, downgrade failil processing 1is initiated. Fail
processing involves issuing an IPR, sending a
ConfigServerMsg "Action Failed" RESPONSE to the Host, and
clearing the under configuration flag for the server.

When a Graceful or Immediate Boot request is not
denied, ConfigMgr sets the UnderxrConfig flag for the server
and sends a ConfigServerMsg "Action Initiated" RESPONSE to
the Host. ConfigMgr checks the server status for the
server and calls GraceHalt or ImmedHalt cperation of NetPM
if the server 1s not at a halted state. If a halt
operation is called, processing 1is suspended until
ConfigMgr is informed that the server status is halted or
the timer expires. It then makes an entry to network
configuration report indicating a boot was requested by the
host.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

34

When ConfigMgr has determined that the server is
halted, it sends a ResetServerMsg REQUEST to the Host.
ConfigMgr creates a Host Response PendingQueue entry to
await the ResetServerMsg RESPONSE from the host.
Processing is then suspended until the RESPONSE is received
or the timer expires. Once the RESPONSE is received,
ConfigMgr sets up a ServerStatus Pending Queue entry to
await the server status becoming 0S-MIN. If the RESPONSE
from the Host is not received before the timer expires, an
IPR is issued and the under configuration flag is cleared.
Once the Server Status becomes O0S-MIN, ConfigMgr sends
Server status messages to the Host indicating the new
server status and clears the under configuration flag. If
the timer expires before the server status becomes 0S-MIN,
ConfigMgr issues an IPR and clears the under configuration
flag.

When a Host Resync request is not denied, ConfigMgr
determines if the server status is XOX MIN. If so,
SetServerStatus operation of NetPM is called to set the
server status to the appropriate Auto/Manual OS_MIN state,
server status messages are sent to indicate the new server
status, and a ConfigServerMsg "Successful" RESPONSE is sent
to the Host. 1If the server status is not XOS_MIN, an IPR
is issued and a ConfigServerMsg "Action Failed" RESPONSE is
sent to the Host.

The Application Status Message is processed by the
platform manager node that is In-Service Active. 1f
neither platform manager node is In-Service, the platform
manager node that is OS-MIN Active will process the
request. Upon receiving an ApplStatusMsg REQUEST type
messages from the Host, ConfigMgr determines the
application query status and sends a ApplStatusMsg S_REPORT
back to the Host with the current application gquery status.
ConfigMgr sends ApplStatusMsg U _REPORT type messages to the
Host when server status changes qgccur or as required during

processing of a Host configure server request.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

35

ConfigMgr receives an ASPEC Data REQUEST message from
the Host for each Application in the ApplsInfo.des
descriptor file. ConfigMgr gqueries NetPM to retrieve the
information for that application from the NetMAP. A
response message containing the ASPEC Data is sent back to
the Host, along with a response code indicating success or
failure. IPRs will be issued if there is an invalid
Application 1Id, a message other than the ASPEC Data REQUEST
message, or a message type other than request.

The Processor service group Info Message is processed

by the platform manager node that is In-Service Active. If
neither platform manager node is Tn-Service, the platform
manager node that is O0OS-MIN Active will process the
request.
Upon receiving a PSGInfoMsg REQUEST type messages from the
Host, ConfigMgr determines the Processor service group Info
and sends a PSGInfoMsg S_REPORT back to the Host with the
Processor service group information.

The Processor service group Status Message is
processed by the platform manager node that is In-Service
Active. If neither platform manager node is In-Service,
the platform manager node that is OS-MIN Active will
process the request. Upon receiving PSGStatusMsg REQUEST
type messages from the Host, ConfigMgr determines the
Processor service group gquery status and sends a
PSGStatusMsg S_REPORT back to the Host with the current
Processor service group dguery status. ConfigMgr sends
PSGStatusMsg U REPORT type messages to the Host when sexrver
status changes occur or as required during processing of a
Host configure server request.

The Query Process Message 1s processed by the platform
manager node that is In-Service Active. If neither
platform manager node is In-Service, the platform manager
node that is OS-MIN Active will process the request.
ConfigMgr receives QueryProcMsg DISABLE SERVER,
DISABLE SERVER_FORCED, and ENABLE_ SERVER request types from

the Host. Upon processing this message, ConfigMgr

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

36

initiates the enabling/disabling of query processing for
the target server by calling the EnableServer/DisableServer
operation from NetPM. ConfigMgr will set up a QueryStatus
PendingQueue entry for the server and suspend further
processing until the query status for the server changes to
the desired state or the timer expires. NetPM informs
ConfigMgr of a change in query status by calling the
NtfyQryStatChange operation of ConfigMgr. When ConfigMgr
processes this operation, it will check the QueryStatus
Pending Queue entries for the server query status state.
If there i1s an entry with the desired gquery status, the
appropriate success query processing procedure is called to
resume processing of the QueryProcMsg. Success processing
for the QueryProcMsg involves sending a QueryProcMsg
RESPONSE back to the Host indicating the regquest was
successful and changing the active status if necessary for
a platform manager node.

If the timer expires before the server query status is
in the desired state, the appropriate fail query processing
procedure is called to resume processing of the
QueryProcMsg. Fail processing for the QueryProcMsg
involves issuing an IPR and sending a QueryProcMsg RESPONSE
back to the Host indicating the request failed.

The ConfigMgr sends ResetServerMsg REQUEST type
messages during boot processing of a server. When the Host
requests a boot for a non-PM server, the ResetServerMsg
REQUEST ig sent after the target server has been halted.
ConfigMgr then suspends boot processing and sets up a Host
Response Pending Queue entry for a ResetServerMsg RESPONSE
type message. Boot processing will not continue until the
RESPONSE is received or the timer expires. When ConfigMgr
receives the ResetServerMsé RESPONSE type message from the
Host, ConfigMgr will check if there is an entry for the
ResetServerMsg RESPONSE in the Host Response Pending Queue
entry for a RestServerMsg RESPONSE in the Host Response
Pending Queue. If so, the appropriate procedure will be
called to complete boot processing.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

37

The Routing Info Message is processed by the platform
manager node that 1s In-Service Active. If neither
platform manager node is In-Serxrvice, the message will be
discarded. Upon receiving a RoutingInfoMsg REQUEST type
messages from the Host, ConfigMgr sends a RoutingInfoMsg
RESPONSE back to the Host indicating the request was
acknowledged and attempts to retrieve the Routing Info.
Once the Routing info is retrieved, ConfigMgr sends a
RoutingInfoMsg S_REPORT back to the Host with the routing
information. ConfigMgr sends RoutingInfoMsg U_REPORT type
messages to the Host upon request by another subsystem to
send routing information. Upon receiving a reguest to send
routing information from another subsystem, ConfigMgr
checks the routing pending queue to determine if the Host
requested the information. If so, ConfigMgr sends a
RoutingInfoMgr S_REPORT to the Host with the routing
information. Otherwise, ConfigMgr sends a RoutingInfoMsg
U _REPORT to the Host with the routing information. After
ConfigMgr sends a U _REPORT to the Host, ConfigMgr waits for
the Host to acknowledge receiving the data by sending a
RoutingInfoMsg ACK RESPONSE. If no response 1is received by
ConfigMgr within the time limit, ConfigMgr requests the
appropriate subsystem to send the application routing
information again (to cause a resend of the data to the
Host) . If a NAK RESPONSE is received from the Host,
ConfigMgr issues an IPR indicating a failed response code
from the Host.

The Scheduled Action Control Message is processed by
the platform manager node that is In-Service Active. If
neither platform manager node is In-Service, the platform
manager node that 1is O0OS-MIN Active will process the
reqguest.’ When SchedaActCtlMsg SET type messages are
received from the Host, ConfigMgr calls SetSchedAction
operation of NetPM to enable/disable the scheduled actions
(such as constant monitoring and generic audits) as
desired. ConfigMgr sends a SchedActCtlMsg RESPONSE type

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

38

back to the Host to indicate whether the Set was successful
or not. ConfigMgr has a GetSchedActions operation that can
be used by a client to get the Host time information. When
this operation is invoked, ConfigMgr sends a SchedActCtlMsg
REQUEST type message to the Host. ConfigMgr then sets up
a Host Regponse Pending Queue entry for the desired
SchedActCtlMsg S_REPORT from the Host. Processing (of
GetSchedActions) 1is then suspended until the S_REPORT is
received or the timer expires. No action is taken if the
timer expires before receiving the scheduled actions. When
ConfigMgr receives the SchedactCtlMsg S REPORT type message
from the Host, ConfigMgr will check if there is an entry
for the SchedActCtlMsg S REPORT in the Host Response
Pending Queue. If so, ConfigMgr calls SetSchedAction
operation of NetPM to enable/disable the scheduled actions
as desired.

The Server Info Message is precessed by the platform
manager node that is In-Service Active. If neither
platform manager node is In-Service, the platform manager
node that 1is OS-MIN Active will process the request.
ConfigMgr sends ServelnfoMsg REQUEST and REQUEST ALL tupe
messages to the Hogt during initialization processing and
restore processing of aplatform managerserver. After the
message is sent, ConfigMgr suspends processing of the task
and sets up a Host Response Pending Queue entry for a
ServerInfoMsg S_REPORT type (and/or COMPLETE type if
REQUEST ALL is used). Initialization and restore
processing is not continued until the required Server Info
is obtained or the timer expires. If the timer expires
(before info is obtained) during initialization, ConfigMgr
sends the ServerInfoMsg REQUEST or REQUEST ALL again until
the information is obtained. If the timer expires (before
info is obtained) during restoral of aplatform
managerserver, ConfigMgr issues an IPR that the restoral
failed.

When ServerInfoMsg S REPORT and COMPLETE messages are
received from the Host, ConfigMgr checks if there is an

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

39

entry for the ServerInfoMsg S_REPORT or COMPLETE in the
Host Response Pending Queue. If so, the appropriate
procedure will be called to complete initialization or
restore processing. When ServerInfoMsg CHANGE type
messages are received from the Host, ConfigMgr determines
if it is in an appropriate state to process a sgsexrver info
CHANGE. If so, ConfigMgr informs NetPM of changed server
information and sends a ServerInfoMsg RESPONSE type back to
the Host to indicate whether the server information was
changed successfully or not.

The Server Status Message is processed by the platform
manager node that is In-Service Active. If neither
platform manager node is In-Service, the platform manager
node that is OS-MIN Active will process the request. Upon
receiving a ServerStatusMsg REQUEST type messages from the
Host, ConfigMgr obtains the server and guery status
information and sends a ServerStatusMsg S_REPORT back to
the Host with the current status information. ConfigMgr
sends ServerStatusMsg U_REPORT type messages to the Host
when server status changes occur or as required during
processing of a Host configure server request.

The Test Server Message is processed by the platform
manager node that isg In-Service Active. If neither
platform manager node is In-Service, the platform manager
node that is 0OS-MIN Active will process the request. If
the target server is myself and my mateplatform manageris
not halted, this platform manager node will discard the
request while the otherplatform managerprocesses message.
Upon receiving a TestServerMsg REQUEST or ABORT type
message from the Host on the MAINT logical link, ConfigMgr
determines if the target server's status is MOS MIN. If
so, ConfigMgr sends a TestServerMsg Acknowledge RESPONSE
back to the Host. In the future, ConfigMgr will initiate
or abort the appropriate test based on whether a REQUEST or
ABORT is received. If the target server is not MOS_MIN,
ConfigMgr sends a TestServerMsg Server Not MOS-MIN RESPONSE
back to the Host. If the target server status cannot be

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

40

obtained, ConfigMgr sends a TestServerMsg Denied RESPONSE
back to the Host and issues an appropriate IPR.

The Time Message is processed by the platform manager
node that is In-Service Active. If neither platform
manager node is In-Service, the platform manager node that
is 0S-MIN Active will process the request. Upon receiving
a TimeMsg SET type messages from the Host, ConfigMgr calls
SetTime operation of NetPM to set the server network time
to the appropriate time and sends a TimeMsg RESPONSE back
to the host to indicate whether the Set was successful or
not. ConfigMgr has a GetTime operation that can be used by
a client to get the Host time information. When this
operation is invoked, ConfigMgr sends a TimeMsg REQUEST
type message to the Host. ConfigMgr then sets up a Host
Response Pending Queue entry for the desired TimeMsg
S _REPORT from the Host. Processing is then suspended until
the S REPORT is received or the timer expires. No action
is taken if the timer expires before receiving the timer
information. Upon receiving a TimeMsg S_REPORT type
message from the Host, ConfigMgr will check if there is an
entry for the TimeMsg RESPONSE in the Host Response Pending
Queue. If so, SetTime operation of NetPM is called to set

the server network time.

Node Management Services
Manager (NodelPMMMain

The Node Management subsystem provides process
management within a single server node. It is responsible
for starting/stopping processes within the server node to
maintain specific run-levels. Run-levels supported by Node
Management are

- HALTED (No software running - not even O0S)

- MIN-SET (OS + Minimal Required Platform Software)

- INSERVIConfigurable element (MIN-SET + Common

Software)
Network Management informs Node Management of the desired

run-level for a specific node. In the event of a process

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

41

failure, Node Management evaluates the failure and
determines what, if any, recovery action is necessary.
Recovery actions include ignoring the failure, autostarting
the node to the next lower run-level and back to the
current run-level, and system shutdown.

NodePM will ve brought up as part of System start-up
procedure for each server node. As part of its

initialization, NodePM:

. Instantiates the NodeMAP object, and after
getting the configuration information on the
minimum Configurable elements that need to be
configured on each servers, it brings up the
server node to a minimal operational state (0S-
MIN) . From this state the server node is allowed
only a minimum set of functionality such as
bringing the rest of the processes up. The
configuration data provided in each node's
NodeMAP determines the capabilities of each
server node (server nodes withplatform
managercapabilities versus server nodes with
guery processing capabilities).

. Creates the NodePM sgerxrver object to handle the
NetPM requests to perform operations within the
same server node.

Per NetPM request, NodePM (through operations provided

by its server object) can perform the following operations:

J Bring up its server node to a fully operation
state (IN-SERVIConfigurable element) from a

minimal operational state (0OS-MIN) (RestoreNode
operation) .
. Bring down its server node to a minimal (OS-MIN)

or halted (HALT) operational state from a fully
operational state (IN-SERVIConfigurable element)
(RemoveNode operation) .

. Enable/Disable the query processing on its server

node.

10

15

20

25

30

WO 99/30514 PCT/US98/26439

42

. Provide status information on Configurable

elements.

NodePM reports any change of status on each IPU
autonomously to NetPM (NodePM wutilizes the operation
provided by NetPM to report the status change) .

FIGURE 8 is a diagram showing the legal service state
transitions for a node. Notice that all automatic states
transition to other automatic states and all manual states
transition to other manual states. There is no legal
transition from a manual state to an automatic state. The
ISV state has no automatic or manual designation at this
time. States can transition form/to IN-SERVICE (ISV) state
200 to/form any other state. The acronyms used in FIGURE

8 are decoded as follows:

ISV 200 in service

O0OSAM 202 automatic out of service
minimal

OOSMM 204 manual out of service minimal

OOSAN 206 automatic out of service-
halted

OOSMN 208 manual out of service-halted

ABOOT 210 automatic boot

MBOOT 212 manual boot

ADOWN 214 automatic downgrade

MDOWN 216 manual downgrade

AHALT 218 automatic halt

MHALT 220 manual halt

AREST 222 automatic restore

MREST 224 manual restore

Node stem In ri N IMas
The Node System Integrity subsystem (class name
NodeSI) provides fault isolation and monitoring services

within a single server node. All process failures are

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

43

logged by this subsystem and forwarded to node Management
for recovery action. Node System Integrity implements the
following features:

- Passive process monitoring (signal catching)

- Inter-nodal communications monitoring

- Local fault reporting

The System Integrity (SI) capabilities of the AIN
platform can be categorized as those providing capabilities
across the server nodes of the platform, and those that
provide capabilities within a single server node. While
NetSI handles the system integrity capabilities at the
platform level, the NodeSI provides system integrity at the
single node level. ©NodeSI resides in every server node of
the platform, and provides operations through which
processes for each configurable element can report fault
conditions on that process. These faults include:

. Faults detected by Constant Monitor object on

each process.

. Inter nodal communication failures.

. Communication failures between the host and

server network.

. Faults detected by IM Server process.

It also performs node <constant monitoring of all
connections to/from the node. It a communication fault is
detected, NodeSI will inform NetSI of the communication
fault. Depending on the reported fault, NodeSI will take
appropriate actions, including issuing IPRs, and
downgrading the node's state (in cooperation with the
NodePM) .

NodeSI monitors the disk utilization on each server
node, the issues appropriate IPR when the total capacity
used on a particular file system exceeds a certain
threshold. NodeSI communication with other objects is
handled via the DOME interface. NodeSI gets the list of
all IPUs in the configuration from NodePM. An array is set

up containing the following information from each IPU:

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

44
. IPU information received from NodePM
. IPU status
. Fault count
. Alive message received indicator

An array index into this list is used to communicate status
with the other NodeSI's rather than the node name since
string comparisons con be costly in terms of speed and
efficiency. Therefore, it is important that each node in
the configuration have the same IPU list in the same order.

NodeSI registers with NodePM to get node state
notifications. When NodeSI is informed of a status change
for another IPU, it will update the IPU status in the IPU
array. It the status change is to the halted state, NodeSI
will clear the fault counts and alive message received
indicator.

NodeSI has two timers to handle 1its constant
monitoring function:

. BroadcastTimer - timer that causes NodeSI to

broadcast "I'm alive" messages to the other
NodeSI's in its view.

. ConMonChkTimer - timer that causes NodeSI to
determine if the appropriate "I'm alive" messages
have been received for all connections within the
time intexval.

When NodeSI is informed that is node is OS-MIN, it starts
broadcasting "I'm alive" messages to the other NodeSI's in
its view. It then triggers the BroadcastTimer. Upon
BroadcastTimer expiration, NodeSI immediately rebroadcasts
the "I'm alive" messages and retrigger the BroadcastTimer.
This will interrupt any NodeSI processing that may be going
on.

When NodeSI receivesg an "I'm alive" message £from
another NodeSI, it marks the appropriate IPU array entry's
Alive message received indicator.

When NodeSI is infqQrmed that is node is OS-MIN, it
triggers the ConMonChkTimer. Upon ConMonChkTimer

expiration, NodeSI makes a Dome call to the CommFailCheck

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

45

operation to perform communication failure checking and
retrigger the timer. It is using the DOME call to itself
in order to assure that priority is given to broadcasting
the alive messages.

Communication failure processing involves checking
each IPU in its array to determine if an alive message have
been received since the last time it checked. If so, the
Alive message received indicator is cleared. If no message
has been received and the IPU status is not halted, the
fault count for that node will be incremented. If the
number of faults for that IPU is at its maximum, NodeSI
reports a communication failure to NetSI.

The maximum number of fault counts is a configurable
value that can be read in from the command line by using
the keyword "MAX COMM_FAULTS". If no value is given, the
default number of fault counts will be 2. Also, if the
value given in the command line is less than 2, the maximum
number will be set to 2.

The number of seconds between each broadcast of alive
messages is a configurable value that can be read in from
the command line using the keyword "BRDCAST ALIVE-SECS".
If no value is given, the default number of seconds between
broadcasts will be 1 second. If the value given in the
command line is less than 1 second, the number of seconds
will be set to 1.

The number of seconds between each constant monitoring
check is a configurable value that cen be read in from the
command line using the keyword "CONMON_CHK_ SECS". If no
value 1is given, the default number of seconds between
checks will be 2 seconds. If the wvalue given in the
command line is less than 2 seconds, the number of seconds
will be set to 2.

NodeSI is started by NodePM as part of every node's
start-up, and prior to other processes start-up. As part
of its initialization, NodeSI reads a descriptor file
(Fault.des) containing the definition of the faults
detected by the NodeSI, and creates a list (FaultInfolList)

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

46

of those fault records. Each fault record (FaultInfo)

contains the following parts:

. FaultId - Fault Identification.
. FaultActId - Action to be taken per Fault
reported.

As faults are received, NodeSI will search for the fault
record in its list (FaultInfolist) using the fault's Id4d,
and performs the action associated with that fault. These
actions may include:
. Issuing appropriate IPRs.
. Halting the node in case of detecting
catastrophic faults on NodePM process.
e Reporting autonomous status changes on
Configurable elements to NodePM.
. Reporting communication failures to NodePM and in
turn to NetST.
All faults (originated from Constant Monitor or other
processes) will be reported to the NodeSI by each process
via NotifyFault () operation of NodeSI. NodeSI keeps track
of disk utilization on the server node, and issues an IPR

if 80 was used.

NodePM Interface

NodeSI uses the interface provided by NodePM to report the
autonomous changes 1in a Configurable element's status
(AutoChgCEStat {...)). Depending on the configurable
element's 4impact on the state of the node, the status
change may cause NodePM to perfofm any of the following

actions:

. Downgrade Node's State - This action is performed
if the configurable element's status change had
a major impact on the current operational state
of the node. Prior to doing this, NodePM will
inform the NetsSI of its intent, and starts a
timer. Then upon request from NetPM or time-out,

it will downgrade the node's state.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

47

. Report Communication Failure - This action is
performed if the configurable element's status
change indicated an internodal communication
failure (TCP link goes out of service). For this
situation, NodePM will notify NetSI of
communication failure, and attempts to establish

the communications again.

NetSI Intexrface

NetSI provides operations, used by NodeSI and/or

NodePM to report the following conditions:

. Autonomous changes in an IPU's status
(DowngradelIPStat (...)) - In this situation, NetSI
downgrades the node through NetPM (requests NetPM
to downgrade, if the node was not halted
already) .

. Communication failures (CommFaultRprt(...})} - In

this situation, if communications failure to the
same IPU was reported by other IPUs, then NetSI
will mark that IPU as the IPU in fault, and
attempts to downgrade it through NetPM.

Constant Monitox Interface
Each Configurable element process 1is required to

instantiate the Constant Monitor object, in order to detect
and report abnormal conditions/events generating different
signals on the process. Constant Monitor reports these
conditions via NotifyFault () operation of NodeSI. In case
of failure to communicate the fault to NodeSI, the Constant
Monitor may HALT the node, depending on the options set at

the time of its instantiation.

Messa Handler/Logical Linkg Interfa

Message Handler or Logical Link configurable element
processes utilize the NodeSI operation NotifyFault (), to
report faults on DNI/TCP links.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

48

Vi MPr
The service management subsystem provides process
control for application processes. Application processes
are only run after the node has achieved the IN SERVICE
run-level. Application processes can be individually
removed/restored and enabled/disabled on a server node.
Network management informs service management as to which
applications to remove, restore, enable, disable. Features
implemented by service management include:
- Active Process Monitoring (Heartbeats, Audits)
- Multiple process instance support
- Application Process State Management
- Administrative State
- Operational State
- Usage State
- Bpplication process state change notification

For the telecom platform Navigator feature to present a
consistent configurable element interface, a change has
been made to have service management start System
configurable elements instead of NodePM. By doing this,
all processes in the system (except service management) are
started by service management, so the features of a
configurable element are now the same system-wide. To
create a telecom platform Navigator GUI, a consistent view
of a telecom platform system has to exist. FIGURE 9A is a
diagram that shows the new relationship that exists during
node initialization between entities in the telecom
platform. For a configurable element to be able to take
advantage of all service management functionality, the
service management interface needs to be followed.
] A boot script 230 is created to be the first
thing to run on all nodes. When the boot program
230 runs, it will identify the platform manager
node 232, and copy the active platform manager
node's Tcl descriptor file 234 over to use to

bring up that node. If is determines that it is

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

49

the first platform manager node to come up, it
will use the existing Tcl descriptor file 234 to
run.

. The platform manager subsystem, and the service
management subsystem 236 have a different concept
of what a configurable element 238 1is in the
previous version of the platform. These two
concepts are joined into one configurable element
concept, merging their separate functionalities.
To do this, the platform manager subsystem will
no longer remove and restore configurable
elements, but will inform service management when
it wants a configurable element to be removed and
restored. Service management will now be the
first telecom platform program started, and will
always start NodePM as part of its
initialization. NodePM will then be in control
of starting and stopping processes that same as
it was before, only through the service
management, not through the old RemoveCE and

RestoreCE functionality.

FIGURE 9B is a message flow diagram showing node
initialization into the MIN_SET state. FIGURE 9C is a
message flow diagram showing node initialization into the
IN_SEVICE state. and FIGURE 9D is a message flow diagram
showing node initialization into the POST_ISV state.

Figure 10 outlines the messages protocol that 1s used
between SM and a Configurable element. If a configurable
element cannot for 1link a service management interface
(SMI) object into it, service management can still start
that configurable element, but many of the features that

service management provides will not be available.

Even n ventmana im

a

The event manager subsystem provides the ability for

a users to generically issue event notification to one or

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

50

more registered parties. Multiple Event::Manager object
instances may exist in the system. A node level
Event : :Manager exists on all nodes. Othexr Event::Manager

instances may also exist to provide the ability for
interested parties to register for events that are special
to a process. The eventmanagerimpl program provides an
Event : :Manager object instance for the mode that it is
running on. Events that are relevant to a node get issued
through that Event::Manager instance. Users interested in
events on a particular node can bind to that nodes
Event : :Manager instance by using that nodes name as the
Event::Manager name. Programs can also embed an
Event: :Manager object within their program. The IprMgrImpl
program is an example of a program that does this. The
IprMgrImpl has an Event::Manager named IprEventMgr. Users
that wish to receive IPR events. Users that are interested
in a particular event may register with a particular
Event : :Manager instance to receive that event through that
Event: :Manager 1instance. The Event::Manager doces not
persistently store the list of registered parties. If the
Event: :Manager tries to forward an event to a
Event : :Receiver that has gone away, that Event::Receiver is
removed form the list.

FIGURE 11 shows two examples of uses for
Event::Manager 250 in the telecom platform system. The
eventmanagerimpl 252 contains the node Event::Manager
object instance 250. The NodePMMain telecom platform
program 254 uses this Event::Manager 250 to issue an event
when the node changes state. The application program 256
then creates an Event::Receiver object 268 and passed a
CORBA object reference to the register call on the
"Nodel23" Event::Manager 250, When NodePMMain 254 generates
an event by calling notify on the "Nodel23" Event::Manager
250, that Event:Manager 250 will find all of the
Event : :Receiver objects 258 that have registered to receive
this event. Seeing that the application program has

registered for this event, the Event::Manager 250 will call

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

51

the notify() method on that Event::Receiver object 258
which will cause the notify () method to be invoked in the
Application program 256. In the example above, the
Application program 256 has also registered with the
"IprEventMgr" Event::Manager 260 in the IprMgrImpl program
262. When NodePMMMain 254 uses the IprMgrImpl interface
to issue an IPR, the IprMgrImpl program 262 does the lookup
on that IPR and performs verification, and calls notify ()
on the "IprEventMgr" Event::Manager 260. This cause that
Event: :Manager 250 to forward the generated event to the
Event: :Receiver 264 in the application program 256 that was
passed in the register call.

Application programs 256 can create their own
Event : :Manager with its own name the same way the
IprMgrImpl program did. Event::Manager instances need to
have unique names in the system to prevent generating an
event to the incorrect Event::Manager, or to help isolate

a user from registering with the incorrect Event::Manager.

IPR/ATARM Services

The Information and Problem Reporting (IPR) subsystem
provides all processes in the system with the ability to
issue Information and Problem Reports. IPRs are the
standard mechanism used to inform users of the system about
error conditions or other pertinent system information.
The Information and Problem Reporting subsystem implements
the collection of IPRs in the telecom platform. An alarm
is a mechanism which may be attached to an IPR. Alarm
services are not available now, but will be available in
future release of telecom platform.

The IPR subsystem provides several features. It
provides active/standby IPR service redundancy, the ability
to forward IPRs to registered receivers, the ability to
forward IPRs to the host, the ability to display IPRs in
real-time, backward compatibility with the legacy
PAConfigurable element IPR intertface, a CORBA IPR

interface, the ability to use an IPR dictionary to validate

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

52

IPRs, the ability to provide additional information about
the IPR that was issued from the IPR dictionary, and the
ability to provision IPR in the IPR dictionary.

Referring to FIGURE 12, the IprMgrImpl program is the
collection point for all IPRs in a telecom platform site.
This program contains the IprMgrImpl CORBA server object.
The IprMgrImpl object runs on each of the active/standby
platform manager nodes. The active/standby state that the
IprMgrImpl reacts to is the node level active/standby state
of the telecom platform manager nodes. The standby
IprMgrImpl object will unpublish its interface, and the
active IprMgrImpl object will publish its CORBA interface
when the platform manager nodes change active/standby
state. By doing this, client users of both the IprMgr and
IPRClient interfaces will have their IPRs forwarded to the
active IprMgrImpl object.

The Event Manager subsystem is used within the IPR
subsystem to distribute IPRs. This allows IPRs to be
forwarded to multiple destinations. By using the Event
Manager, additional IPR features can be easily added to the
system without incurring interface changes. The Event
Manager mechanism of the IPR subsystem is currently used
within the telecom platform to provide some existing IPR
services. The real-time IPR GUI 270 registers to receive
IPRs for the purpose of displaying IPRs as they occur. The
Ipr2host program 272 registers with the IPR subsystem to
receive IPRs and forwards them to the host. An IPR logger
may also register to receive IPRs to log to disk.

The ipr2host program 272 is responsible for forwarding
IPRs to the host. It receives IPRs from the IprMgrImpl's
Event Manager, and formats a host message to forward on.
All IPRs that get forwarded to the host use the message
handler subsystem to forward IPRs over the IPR ASSERT
logical link.

The IPR subsystem has a two external interfaces: the
IPRClient interface 274 and the CORBA IPR interface 276.
The IPRClient interface 276 exists for backward

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

53

compatibility with previous PAConfigurable element
releases. Once the issued IPR from the IPRClient interface
274 has been converted by the IPRClient code, an IPR is
issued using the IprMgrImpl CORBA interface to route the
IPR to the active IprMgrImpl object. This interface still
uses the LOCIPRDB.DSK IPR dictionary as input for
converting the- - old PAConfigurable element IPRs to the
current IPR subsystem format. This requires that a
LOCIPRDB.DSK reside on each node that has programs that
issue IPRs. The LOCIPRDB.DSK dictionary was used in the
previous releases to do IPR verification before IPRs were
forwarded to the host. The RegisterIPR utility is used to
enter IPRs into the LOCIPRDB.DSK dictionary. The fields in
the database entries include: ASCII key (IPR text), host
IPR number, IPR priority, number of data words used, and
data word format. In order to test the IPRMgr, IPRs must
be defined in ipr.in which will be converted to a keyed
dictionary (via the RegisterIPR utility).

The IprMgrImpl interface is a CORBA IDL interface. If
an IPR is issued using this interface, it is not required
to be entered in the LOCIPRDB.DSK dictionary. When the
IprMgrImpl object receives an issued IPR, it looks it up in
its IPR dictionary and constructs an IPR event to be
issued. The IPR event contains information that was passed
from the client that issued the IPR, and information from
the IPR dictionary. IPRs must be added to the IPR
dictionary and the MegaHub host IPR dictionaries prior to
issuance of an IPRs. The IprDriver tool is used to add
IPRs to the IprMgrImpl IPR dictionary. The reformat and
reformat2 scripts exists to assist in converting a VAX IPR
file to a format that can be used with the IprDriver to
populate the IprMgrImpl IPR dictionary.

FIGURE 13 illustrates the scenario where an
application issues an IPR, the IPR Manager processes 1it,
and the Ewvent Manager routes the IPR to an IPR GUI for
visual display.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

54

1) The IPR GUI registers an interest in receiving
all IPRs reported to the IPR Event Manager.

2) An application issues an IPR.

3) The IPR Manager forwards the IPR to the Event
Manager.

4) The Event Manager distributes the IPR to the IPR
GUTI.

FIGURE 14 is an example of an IPR View GUI screen
print. The IPR View GUI application provides the display

of IPRs in a split window. In 'the top pane a graphical
view of IPRs is shown with costs vs. time displayed on
category basis. The bottom pane displays a traditional
full/brief text view of IPRs. Subcategories may be viewed

and a number of customizations of the display are allowed.
In addition, filtering and highlighting are available for
the IPRs displayed. Communication is handled via CORBA.

Statistics Servicges
Data llection (DcMPro D¢cPro

Referring to FIGURE 15, the data collection subsystem
(DC) 298 provides the traffic measuring functionality for
the application programs within a node. These measurements
are counts recorded by the PegCounter class and elapsed
time recorded by the TimeMeter class. PegCountexr 299
testing will indirectly test shared memory 300 and
semaphores. Client processes 301 peg to shared memory 300,
and data collection 298 collects from shared memory 300 and
sends to DCMaster 302. Every 30 minutes, data collection
298 sends the DCMaster 302 (in the active platform manager
node) the 30 minutes worth of peg counter slots 299 and
then data collection zeros out those slots. The active
platform manager node 304 updates the standby platform
manager node 306.

Referring to FIGURE 16, the statistic services or data
collection subsystem 320 provides the traffic metering and
measurement capabilities of the platform. This subsystem

320 supports the creation, collection, and reporting of

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

55
statistical measures like peg counters, time meters,
threshold counters, collection and querying. PegCounters

322 and TimeMeters 324 are shown supported acrossg a
distributed application. Features implemented by the data
collection subsystem 320 include:

- PegCounter 322 and TimeMeter 324 API Support

- Collection of accumulated data from multiple nodes

- Reporting GUI for local viewing of statistics

- User defined measurement sets for report customizing

hreshol unter T rv

The threshold counter subsystem may be implemented as
an object request broker (ORB) distributed object, using
the orbeline ORB implementation. Applications are
connected via Orbeline to a server object resident in the
platform manager nodes. The server reports counter
threshold crossings to applications via distributed object
messaging environment (DOME) . The server object are
created by the thresholds counter server process, TCServer.
Each TCServer process also communicates wvia Orbeline with
the TCServers on remote nodes so that counters can be
synchronized across sites. The TCServer keeps all counters
in persistent storage using the persistent dictionary
supplied in the common services library as template class
RepShmDict.

FIGURE 17 shows the communication paths between
application processes 340 and the counter server processes.
The TCServer process 342 communicates with application
processes 340 via both Orbeline 344 and DOME 346. The
TCServer process 342 runs in an orbeline impl_is_ready
locp, waiting for service requests from either application
processes 340 or from a TCServer process 342 on another
ﬁode. It makes a DOME RegServ call to notify application
processes 340 that a counter has reached its threshold.

REferring to FIGURE 18, the . threshold counter
subsystem 360 API hides the orbeline-specific portions of

the implementation from the application programmer.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

56

Instead, the client side of the subsystem will consist of
two layers: an ORB-independent layer 362 , and an
orbeline-dependent layer 364. Although the orbeline-
specific implementation of the subsystem is hidden from the
application programmer, the distributed nature of the
subsystem is not. To minimize the time required for
counter increments, counter increments are buffered in the
API, and sent to the server in batches. This means that
the application is unable to receive immediate notification
of the success or failure of some operations on the API

cbjects.

Communicationg Services
Message Handling (MsgHndl, LinkXXX)

As shown in FIGURES 19 and 20, the Message Handling
subsystem 370 provides message based interprocessor
communications services. Generally all interprocess
communication between processes on the server nodes is
carried out via the Distributed Object Messaging
Environment (DOME) 372 shown in FIGURE 21. DOME 372 uses
the Message Handling subsystem 370 when information must be
communicated across node boundaries. The Message Handling
subsystem 370 is also used for communication to non-server
exXternal systems such as the SCP Host. The Message
Handling subsystem 370 implements the following features.

- Common interface for multiple protocols.

- TCP/IP 374
- UDP/IP 376
- DECNET 378

- Single access identifier (Logical Link Group Name)

for multiple links with same destination.

- Redundant link management (improves scalability)

- Link failure recovery

- Asynchronous receive interface

Distributed QObject Services

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

57

Referring to FIGURE 21, DOME 372 is a client/server
interface used for interprocess client/server
communication. It contains server interfaces 382 which
allow server processes 382 to register objects and member
functions for use by client processes 384. DOME 372
contains a shared memory database 380 to store the server
descriptions and a stand-alone DOMEServices process
(domesrv) which maintains the server object descriptions
from other nodes. It also contains client interfaces 384
which provide access to any registered server object in the
node's DOME database.

The Interprocess Communications subsystem consists
mainly of DOME. DOME provides the ability for a process to
register a server object and it's methods in a way that
allows other processes in the system to invoke those
methods. DOME supports various modes of registration and
access including many special routing options that aid in
the development of fault resilient software. Features
implemented by the Interprocess Communications subsystem

include:

- Registered Object Name Management across nodes
and sites

- Prioritized request handling

- Active/Standby Object request routing

- Load Shared Object request routing

- Broadcast Object request routing

- Blocking/Non-Blocking Object requests

Common Services
The Common Utilities subsystem provides a library of

programming tools to aid in the rapid development of
processes designed to run on or within the platform layer.
The features implemented by the Common Utilities subsystem
include:

- Command Line Object

- Trace Object

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

58

- Shared Memory Object

- Semaphore Object

- Keyed Dictionary Object

- List Object

- Replicated Keyed Dictionary Object
- Shared Memory Dictionary Object

- etc.

DbgTrace Object

Referring to FIGURE 22, the DbgTrace facilities 400
provides the ability to issue trace messages to a trace
buffer, to a file, and/or to standard error. Trace data
can be entered in two different formats: standard print
format, and a data buffer dump format. A mask 402 may be
used to filter out different levels of messages. There are
32 possible mask levels for each DbgTrace group.

The DbgCntl interface 404 is the control interface for
DbgTrace objects 400. It allows users to specify many
different aspects of the DbgTrace facility 400. This
interface allows users to do the following things on

DbgTrace objects 400:

- Set/Get the mask 402 for a DbgTrace group 400.

- Set/get the size of the internal message buffer
410,

- Get a list of existing groups.

- Turn on/ocff display to standard error.

- Turn on/off dumping of traces one at a time to a
file.

- Enable/disable the ability to dump traces out to

file before they get overwritten.

A DbgDisk interface allows users to specify which file the
trace buffer 410 will be written to on all write reguests.

The DbgTrace facility 400 allows the users to create
different DbgTrace objects 400 that can each belong to one

of multiple groups. This allows users to have a unique

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

59

mask value for each group. All traces issued through the
DbgTrace interface 400 get stored in an internal message
buffer. Users can also specify whether to issue traces to

standard error in addition to the internal buffer.

r b

The Trace object provides the user the ability to
optionally issue trace messages to standard error. When
the user 1issues a trace, a mask 1is specified which
represents the trace level that this trace will be output
for. The Trace interface allows the user to specify a mask
which all instances of trace in that UNIX process will use
to determine whether or not to issue the trace message.

The trace mask may supports eight unique mask values.

Dictionary Management System
Referring to FIGURE 23, Dictionary Management provides

classes which are designed to support data storage and
access. Dictionaries can be stored on disk (persistent) or
stored in memory. Dictionaries can also be private (used
by local process only) or shared (accessible by multiple
processes). The purposes of these dictionaries are defined
by the application program. The primary interaction
between DmsMaster 430 and DmsServer 432 is that DmsMasterxr
430 updates DmsServer 432 when it receives an update
message from the application. DmsMaster 430 runs as
active/standby in the platform manager nodes, and DmsServer

432 runs in all (or a subset) of the IPUs.

Even vi

Event services provide the capability to generate and
distribute specific occurrences significant to a task among
loosely coupled processes. An example of an event is the
completion of an input/output transfer. The event services
may be a CORBA-based interprocess communication facility.
It uses standard CORBA reqguests that result in the

execution of an operation by an object. This 1is

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

60

accomplished through the event manager implemementation
program.

By defining two distinct roles for objects,
communication 1is decoupled between objects; creating
asynchronous communication. One object receives and

accumulates new events, while the other object registers an

interest to be forwarded these new events. This is
accomplished by two CORBA c¢lasses, EventManager and
EventReceiver. EventManager provides an interface

definition language (IDL) interface for receiving new
events. EventReceiver provides an interface definition
language interface for ¢lients interested in receiving

events.

Software and Hardware Repregentation

FIGURE 24 shows the hardware view of a telecom
platform system. At the highest level, a telecom platform
system consists of one or more sites 440. Within a sgite
440, multiple nodes 442 exist.

The software representation is a hierarchy allowing
components of software to be grouped together. FIGURE 25
shows this hierarchy. An Application 450 exists at the
highest level. An Application 450 is made up of one or
more configurable element sets 452, which is made up of one
or more configurable elements 454. Multiple applications
450 can be defined within a system. All of the
applications 450 within a system make up the software
representation of a system.

The dynamic mapping of software onto hardware
representation of a system shown in FIGURE 26 depicts how
pieces of an application 450 are placed onto nodes 442.
Sites 440 contain applications 450. Applications 450 have
processor service groups 456. Processor service groups 456
span multiple nodes 442. Nodes 442 have configurable
element sets 452 placed on them. Configurable elements 454
reside within configurable element sets 452. For example,

a software representation of a time dependent routing

10

15

20

WO 99/30514 PCT/US98/26439

61

application may have two configurable element sets:
WestCoastSet and EastCoastSet. Within the WestCoastSet,
the time dependent routing application could have all of

the programs that need to run on the nodes targeted to

handle West Coast calls. These might include database
programs, link processes, etc. that are configured
specifically for West Coast handling. Within the

EastCoastSet, the time dependent routing application may
have all of the programs that need to run on the nodes
targeted to handle West Coast calls. The time dependent
routing application would then be allocated onto a sgite.
Nodes that will run the time dependent routing application
will be grouped into processor service groups. The
configurable element sets for the application would then be
placed on nodes that have been placed into a time dependent
routing application processor service group.

Although several embodiments of the present invention
and its advantages have been described in detail, it should
be understood that mutations, changes, substitutions,
transformations, modifications, variations, and alterations
can be made therein without departing from the teachings of
the present invention, the spirit and scope of the

invention being set forth by the appended claims.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

62
WHA ED
1. A telecom platform forming an interface between
application programs performing telecommunications

functions and an operating system running on at least one
node at a site supporting the application programs, and
further forming an interface between the application
programs and a telecommunications network, comprising:

network management processes operable to provide
inter-node configuration, monitoring and management
functionality;

node management processes operable to provide node
initialization, configuration, monitoring, and management
functionality;

event processes operable to provide initialization,
termination, and distribution of tasks in xresponse to
predetermined events;

common processes operable to provide a library of a
plurality of programming tools for the development of the
application programs;

communications processes operable to provide message
handling functionality; and

distributed object processes operable to provide a

distributed database repository for object-based
communications.
2. The telecom platform, as set forth in claim 1,

further comprising information and problem report and alarm
processes operable to provide error condition monitoring,

alrams, and reporting.

3. The telecom platform, as set forth in claim 1,
further comprising statistics processes operable to provide
methods to access system measurement data and to generate

reports on the system measurement data.

10

15

20

25

30

WO 99/30514 PCT/US98/26439

63

4. The telecom platform, as set forth in claim 1,
further comprising dictionary processes operable to provide

data storage and access methods.

5. The telecom platform, as set forth in claim 1,
further comprising graphical wuser interface processes
operable to provide graphical user interface building

methods.

6. The telecom platform, as set forth in claim 1,
further comprising:

at least one platform management node on which network
management processes are supported;

at least one application node coupled to the at least
one platform management node on which node management

processes are supported.

7. The telecom platform, as set forth in claim 6,
wherein the at least one platform management node is also

the at least one application node.

8. The telecom platform, as set forth in claim 6,
wherein the at least one platform management node
comprises:

a first platform management node operating in an
active mode; and

a second platform management node operating in a
standby mode.

9. The telecom platform, as set forth in claim 6,
wherein the at least one platform management node comprises
two or more platform management nodes operating in a load-

sharing mode.

10

15

20

25

30

WO 99/30514 PCT/US98/26439

64

10. The telecom platform, as set forth in claim 1,
wherein the network management processes comprise:

a network platform manager operable tc remove nodes
from service, restore nocdes to service, remove applications
from service, and restore applications to service;

a network system integrity manager operable to monitor
the nodes and to enable failed nodes to recover; and

a configuration manager operable to interface with a

host coupled to the telecom platform.

11. The telecom platform, as set forth in claim 1,
wherein the node management processes comprise:

a node platform manager operable to provide management
functions for a node;

a service manager operable to start and stop processes
at the direction of the node platform manager; and

a node system integrity manager operable to monitor

inter-node links.

12. The telecom platform, as set forth in claim 1,
wherein the event processes comprise:

an event manager operable to register client processes
wishing to receive events; and

an event receiber operable to provide an interface for

client processes which are registered to receive events.

13. The telecom platform, as set forth in claim 1,
wherein the common processes comprise a timer manager

operable to provide date and time functicnality.

WO 99/30514 PCT/US98/26439

65

14. The telecom platform, as set forth in claim 1,
wherein the statistical processes comprise:

a peg counter process operable to count specific
events occurring across multiple nodes;

a time metering process operable to accumulat the
duration of a specific event;

a data collection process operable to collect counter
data on a node and storing the collected data.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

66

15. A method of providing a software interface
between application programs performing telecommunications
functions and an operating system running on at least one
node at a site supporting the application programs, and
further forming an interface between the application
programs and a telecommunications network, comprising:

supplying network management processes operable to
provide inter-node configuration, monitoring and management
functionality;

supplying node management processes operable to
provide node initialization, configuration, monitoring, and
management functionality;

supplying event processes operable to provide
initialization, termination, and distribution of tasks in
response to predetermined events;

supplying common processes operable to provide a
library of a plurality of programming tools for the
development cf the application programs;

supplying communications processes operable to provide
message handling functionality; and

supplying distributed object processes operable to
provide a distributed database repository for object-based

communications.

16. The method, as set forth in claim 15, further
comprising supplying information and problem report and
alarm processes operable to provide error condition

monitoring, alrams, and reporting.

17. The method, as set forth in claim 15, further
comprising supplying statistics processes operable to
provide methods to access system measurement data and to

generate reports on the system measurement data.

18. The method, as set forth in claim 15, further
comprising supplying dictionary processes operable to

provide data storage and access methods.

10

15

20

25

30

WO 99/30514

PCT/US98/26439

67

19. The method, as set forth in claim 15, further
comprising supplying graphical user interface processes
operable to provide graphical user interface building

methods.

20. The method, as sget forth in claim 15, further
comprising:

running the network management processes on at least
one platform management node; and

running the node management processes on at least one
application node coupled to the at 1least one platform

management node.

21. The method, as get forth in claim 20, further
comprising running the network management processes and the
node management processes on a platform management node

also serving as an application node.

22. The method, as set forth in claim 20, further
comprising:

operating a first platform management node in an
active meode; and

operating a second platform management node in a

standby mode.

23. The method, as set forth in claim 20, further
comprising operating two or more platform management nodes

operating in a load-sharing mode.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

68

24. The telecom platform, as set forth in claim 15,
wherein providing the network management processes
comprise:

providing a network platform manager operable to
remove nodes from service, restore nodes to service, remove
applications from service, and restore applications to
service;

providing a network system integrity manager operable
to monitor the nodes and to enable failed nodes to
recover; and

providing a configuration manager operable to

interface with a host coupled to the telecom platform.

25. The method, ag set forth in c¢laim 24, wherein
providing the node management processes comprise:

providing a node platform manager operable to provide
management functions for a node;

providing a service manager operable to start and stop
processes at the direction of the node platform manager;
and

providing a node system integrity manager operable to

monitor inter-node links.

26. The wmethod, as set forth in claim 15, wherein
providing the event processes comprise:

providing an event manager operable to register client
processes wishing to receive eVents; and

providing an event receiber operable to provide an
interface for client processes which are registered to

receive events.

27. The method, as set forth in claim 15, wherein
providing the common processes comprise providing a timer

manager operable to provide date and time functionality.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

69

28. The method, as set forth in claim 15, wherein
providing the statistical processes comprise:

providing a peg counter process operable to count
specific events occurring across multiple nodes;

providing a time metering process operable to
accumulat the duration of a specific event;

providing a data collection process operable to
collect counter data on a node and storing the collected
data.

29. The method, as set forth in claim 15, further
comprising:

running a boot script;

starting a service manager in accordance to the boot
script;

starting, by the service manager, a node platform
manager for a node;

starting, by the service manager, PRE-MIN
configuration elements for the node;

starting, by the service manager, OS-MIN configuration
elements for the node; and

upgrading a state of the node in response to the 0S-

MIN configuration elements in the node.

30. The method, as set forth in claim 25, comprising:

monitoring and detecting a failure in a configurable
element;

notifying the fault to the service manager;

generating, by the service manager, a status change
for the configurable element and forwarding the
notification to the node system integrity manager;

forwarding, by the node system integrity manager, the
notification to the node platform manager;

determining, by the node platform manager, the node
status in response to the failed confugurable element; and

notifying the net platform manager, by the node

platform manger, of a node status change.

10

15

20

WO 99/30514 PCT/US98/26439

70

31. The method, as get forth in claim 30, further
comprising:

determining, by the net platform manager, a status
change in an application having the failed configurable
element and a status change a processor service group
having the application having the failed configurable
element; and

notifying any status change to the configuration

manager.

32. The method, as set forth in claim 31, further
comprising forwarding, by the configuration manager, a
node, processor service group or application status change

to a host.

33. The method, as set forth in claim 25, further
comprising:

registering with an event manager, by an application,
an interest to receive a particular event;

sending, by the event receiver, the particular event

to the registered application.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

71

34. A method of providing a software interface
between application programs performing telecommunications
functions and an operating system running on at least one
node at a site supporting the application programs, and
further forming an interface between the application
programs and a telecommunications network, comprising:

providing a network platform manager operable to
remove nodes from service, restore nodes to service, remove
applications from service, and restore applications to
service;

providing a network system integrity manager operable
to monitor the nodes and to enable failed nodes to
recover;

providing a configuration manager operable to
interface with a host coupled to the telecom platform;

providing a node platform manager operable to provide
management functions for a node;

providing a service manager operable to start and stop
processes at the direction of the node platform manager;
and

providing a node system integrity manager operable to

monitor inter-node links.

35. The method, as set forth in claim 34, further
comprising:

providing an event manager operable to register client
processes wishing to receive events; and

providing an event receiber operable to provide an
interface for client processes which are registered to

receive events.

36. The method, as set forth in claim 34, further
comprising providing a timer manager operable to provide

date and time functionality.

10

15

20

25

30

35

WO 99/30514 PCT/US98/26439

72

37. The method, as set forth in claim 34, further
comprising:

providing a peg counter process operable to count
specific events occurring across multiple nodes;

providing a time metering process operable to
accumulat the duration of a specific event;

providing a data collection process operable to
collect counter data on a node and storing the collected
data.

38. The method, as set forth in claim 34, further
comprising:

running a boot script;

starting a service manager in accordance to the boot
script;

starting, by the service manager, a node platform
manager for a node;

starting, by the service manager, PRE-MIN
configuration elements for the node;

starting, by the service manager, OS-MIN configuration
elements for the node; and

upgrading a state of the node in response to the 0S-

MIN configuration elements in the node.

39. The method, as set forth in claim 34, comprising:

monitoring and detecting a failure in a configurable
element;

notifying the fault to the sgervice manager;

generating, by the service manager, a status change
for the configurable element and forwarding the
notification to the node system integrity manager;

forwarding, by the node system integrity manager, the
notification to the node platform manager;

determining, by the node platform manager, the node
status in respgnse to the failed confugurable element; and

notifying the net platform manager, by the node

platform manger, of a node status change.

10

15

20

WO 99/30514 PCT/US98/26439

73

40. The method, as set forth in claim 39, further
comprising:

determining, by the net platform manager, a status
change in an application having the failed configurable
element and a status change a processor service group
having the application having the failed configurable
element; and

notifying any status change to the configuration

manager.

41. The method, as set forth in claim 40, further
comprising forwarding, by the configuration manager, a
node, processor service group or application status change

to a host.

42, The method, as set forth in claim 34, further
comprising:

registering with an event manager, by an application,
an interest to receive a particular event;

sending, by the event receiver, the particular event

to the registered application.

WO 99/30514 PCT/US98/26439

1/21

10 12 DEVELOPER'S APPLICATIONS

DIRECT
| NUMBER 2 ACCESS

LAYER
NUMBER 3 05, NETWORK PROTOCOLS, 3rd PARTY

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514

2/21

SITE
PSG

NODE

NODE

-

Pee-

NODE
CE SET

APPLICATION

FIG. 2
SUBSTITUTE SHEET (RULE 26)

pe—me—PSG
NODE

PSG
NODE

-
L
2

NODE

D
=
=Y
_2

2
D
D)

PCT/US98/26439

WO 99/30514

& 9ld

§1953) Jo mMan papodxa

~
-~ ~

~N
/ sjuawas N

\

aliang

\ .
" o-».a \b
\

————
- -~

//
’ Suawa

-~ -~

— —

SELp o] _w maln papojdxa

\ 5195 3) 2(qOIngU)SIp
\ Jussaip ¢

/

A
S3poU §S0190 |
pakojdap a0 !

13953) 1983)

3ys 0 0)
paddow s|
uorjoo1ddy

A

S U

Kqpunjg

sv panbuuo)
apoN cipy

sapoN uawabouoy wiojojg

00 00

MY Sapisay

d10m)j05 ‘p3juan0
~uswszbouoy sposay
uuojiog WwodHIY

i3y sapisay
oi0Mjo§ pajuao
~juausabouoy yomjay
» W0 WO

S

-
-

/
%7

-

So §[030)04
SN 18u930/dan s A

M spios” T “spin 1
L 1wyl | — “.ﬁsm.zm.__

1S0H d0S

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514
10 4/21
64 ™~ 65 66 .) 67 75
\ \ \, Application Services 60 / Y,
[PR/Alarm Statistics Dictionary GUI HMS
Services Services Services Services
____________________ Eo;e Services 62 T
Network Node Distributed T
Management || Management || ~ Object || Communications || Common | Event
))) Services Services || Services
Services Services Services
/ / / N N N
68 69 70 FIG. 4 72 73 74
DEVELOPER
FIG. 5 1/4
TELECOM PLATFORM API
-~ 68~ | NETWORK MANAGEMENT SERVICES
[_"__ : r) 24444
1 A b
<] TNoDE MaANaGEMENT SErvices |59
B ——
- COMMUNICATION SERVICES P~
" & HERE | A A
8 & -— HOST IMAINTENANCE SIMULATOR [—
ol & r--Ir ‘
; v L LLLy : y
g 8 — [IPR/ALARMS SERVICES =
3 I
2 § [___ t 7 64
-— /| EVENT SERVICES
(=7 —— 74
- /1 DICTIONARY/ SERVICES N
[I 7 66
<— || /1 stAmisTicAL /SERVICES
. : 65
| | -/’
73 GUI SERVICES WAY,
L2 \67 DISTRIBUTED
OBJECT SERVICES
* 0S, NETWORKS PROTOCOLS, 3rd PARTY

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514

5/21

Host Maintenance
Simulator Package
89

Dictionary
Managment
System Package

Data Collection
Package
87
DC
Process

Eo
5T w
<C ¢
=8 %
a a.

%)

S g
=2 <]
RMO_ © =
SO 23
£s 5
<g =
&%

— e —— — v — e —— — — — — AN - o S i — — — — — — — — —

e e . e e am e . — — —

CORE

. Event
Manager

82

Config
Service
Manager

TELECOM PLATFORM API

X OPTIONAL PACKAGE

% SINGLE-THREADED PROCESS

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 99/30514 PCT/US98/26439
6/21
100 PM SUBSYSTEM Network Level Testing 102
\ PM Node (active) PM Node (standby) /
Mate f “")
NetSI - — NetSi
Ve nnJ 104 104 [Y 4N
106 (e Mate . 106
Ne‘tPM } { Ne‘tPM
Node{ PSG| |App! (ConfigMgr) (ConfigMgr) Appl| [PSG [Node
A A
Node| Control Control Node
(Host/ 108 108 (Host/
ConfigMgr) 110 ConfigMgr)
A4 Yy A4 Y / [y Al A
C PM NETWORK TEST DRIVER)
FIG. 7A
MegaHub Host L~110
Active PM Node Standby PM Node
h 4
@onfigMQHNetPMl ~("Nodepn) 112
(104 .
108 r adjtime()
100~ (uhubClockricker) (NodePM 102
112
adjtime() 1/2 0
antpd (masterD\120 @pd (moster))
4 4
Time Time
Sync Application Node Application Node | Sync
Y Y
Qntpd (slave)) antpd (slove))
1217 7 °° N 121
122 122

FIG. 7B

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514

7/21

3poN uonooiddy

-

abuoyd

snjois 33
$3)0Jaudb

e

uoRoaLoU
0| SPUomio) ©

48

~9¢1

sjonssul

sabuoyd ©

71 sebuoyy

Jouayal

) _

$30IMaG Juawaboucy apoy !

8C1-

|| SMOIS 3poN

— A2PON S “ Jwsuos|
= dl/doL |

[2a3) uns apou ssuiwsajap ()

NJARNIE |

apoN juawabouoy wuooly

\ sabuoyd a_“oc@“ ")
$3sn)o)s uoijoayddo ——— |

_1 sabuoyd

ay) spJomo;

0l sabuoyo
snjojs Ajjou

S30IM9G Juawabouoyy yiomyap

lllllll =] 58snjojS uonoayddy

orl

SUBSTITUTE SHEET (RULE 26)

WO 99/30514

8/21

PCT/US98/26439

TP CORE SERVICES PROCESS INTERACTION

SUBSTITUTE SHEET (RULE 26)

140 : RUN ON AALL NODES
N : Rerrzove,) Restore, 112
MegaHub Host] Test)Node /\<
Y : { NodePM)=
\
Remove, Node : Node/Link y
Restore, Status | Status Change
(Test)Node ! : Remove,
| Change CE Status; Restore, .
ConfigMgr " i Link Status Change Link o
4
|
Remove, I Remove,| |CE
Restore. | | Node (| 130 Restore, CE| |Status
(Test)Node | | Status | t !
y : NodeSI SM MH
NetPM I Iy) [y]
¢ Node ! 134 CE State;
'y Status : Heartbeat,
104 | Audit Reply Link
: Remove, Status
Node | Restore CE;
Status | CE Heartbeat, Remove,
Change NetS| | Foult Audit Req Restore, Link
: Y
| .
106 E'S ConMon | CE @xxx
| Link Status Change
- } -
PM s -
ISN
FIG. 7D

WO 99/30514 PCT/US98/26439

9/21
200
AHALT Z MHALT
218~ 222~ - VL 224|220
AREST ADOWN MDOWN MREST
214 /D0 2167
] WN
> QOSMM
OOSAM 4
2027 MHALT T 20
ABOOT AHALT MBOOT MHALT
2107 21271
= OOSAN ™1 OOSMM f=
206" AHALT ™\-208
FIG. 8
Tel
Descriptor
S99tp Runs -
U opy
o 0 0 . 234
230 Sources

7

238

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514

10/21

g6 914

9PON Wd 40 JSOH
=

mmvoim

S3pON Iy

“Sj0IS 100y,/95d/3p0N

A

\ /

awi] puo S3poN o

JO SMDIS YIOM)BN

'smo)s (ddy/954,/apoN

~ (135-NIW)

~ abuoyy snjojg apoN

A

A

sabubyy smpoig 19

D ———

30 sazonu}/spos WS

(ss2y10) 39910017

X3 UIDWSH/1S0H

ax3-16pbyuo)

30 sezionul/spolS WS

(SAH) 3091001)

3X3'UIDNJIaN

30 SaZIPIU]/SHOIS WS

?mzm__coov 79310819 >

A

30 sezyonw]/sp0iS zmv

(Wd1eN) 3091001

39 NIN-35d svois

3X3 UIDW
(13S-NIW) LINI 3CON dlL

Wd3PON

<

%

yur wayshs s Jo
Jod so NS Sp0)S

3X9°SS320JJINS

di66S/Pg21/23/

: SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

11/21

WO 99/30514

J6 IId

=

3PON fd Jo JsOH SpON d S9poN Iy

“SmoyS (ddy/95d/9PoN

“snois 1ddy/9Sd/apoN (ASI)

~ abuoyy) smpjs apoN

I

.
3
.

sabuoy) sniois 19

[

30 sazyoniu]/spois WS

(30 AS]) 3091001)

30 sazionu]/spols S

(130 ASI) 30910010

A4

1sanbay alojsay

$30 AS[Jo 181

y

-

)sanbay aio)say

Jsanbay 210)say
X9 UIDWSINH/1SOH axa"1bpbyuoy X3 UIDWNJISN 9X3'UIDNJ3PON EEEREER RN d1665/p'¢21/213/
(ASI) LINI 300N dL

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

WO 99/30514

12/21

ade 9id

SPON Wd 10 IsoH S3poN Wd SapoN |Iv
= 4 3 ’ A
~ snojs 1ddv/95d
snoj§ 1ddy/9sd |
) sabuoyy snoig 39
- 318vN3
- 30 s3jqou3 NS TANVA
| 1ddy pajsanbas Joj 3)91qou] SaNOAU] WdION -
jsanbay ajqouy
1sanbay ajqou73
" smpis (9dy/0sd
smoi§ 1ddy/9sd |
) b
ssbuoyd smois 30 | J401STY
(|30 sazonul/SUOIS WS | urnvin
| 1ddy pajsanbas soj 3931001 savoAu] wdlN
\senbay aiojsay
Jsanbay aio}say
“smis 100v/9sd |
snojg ddy/9sd |
sabuoyy smpois 1) P0ISHY
S Sa7on oLnv
S00-1 3j0)s uajsissad yym suonoayddy oy |3 S8ZIDNIU]/SLOIS WS
$3) ASI-1S0d 0§ 3)3)031) SMOAU| WION
3x9"UIDNSH/150H ax3bpbryuoy 3X3UIDW 1SN 3X3"UIDWIJSPON 9X3'$S9201dINS

(ASI-1S0d) LINI 3GON dl

SUBSTITUTE SHEET (RULE 26)

WO 99/30514 PCT/US98/26439

13/21
FIG. 10
Externol Request SM CE(s)
createApplication
> fork/exec -
ready (L,0,I)

initialize -

initComplete (L,D,X)

setAdminState(U)s

stateChgNotify(U,E,X) : -
setAdminStateResp(U,E,X)

enableApplication

: > setAdminState(U)
stateChgNotify(U,X,X) - -
- ~ setAdminStateResp(U,X,X)
disableApplication)
: > setAdminState(S)
stateChgNotify(S,X,X) : >~
< ~ setAdminStateResp(S.X,X)
3 setAdminState(L)
. setAdminState(L) -
stateChgNotify(L,X,X) >

- setAdminStateResp(L,X.X)

-}

disableApplication

setAdminState(L)
stateChgNotify(L,X,X) - -
= ~ setAdminStateResp(L.X.X)

-

A

removeApplication

: setAdminState(S)
stateChgNotify(S,E,!1) : >
~ setAdminStateResp(L.D.1)

Y

terminateProcess

Y

B endProcess
| — Idle D - Disabled U - Unlocked X - Don’t care
E - Enabled S - Shutdown L — Locked

+ This message will only be sent if the Auto Unlocked status is set to AUTO_UNLOCKED

SUBSTITUTE SHEET (RULE 26)

WO 99/30514 PCT/US98/26439

14/21
252 : - 256
\, eventmanagerimpl.exe Application program /
250) oty 4)
Event : : Manager) , Event : : Receiver
Name = ’i(fffs/ l register (node state change)
)) 264 258
Event : : Receiver
generote ([PR notificotion)
event \ T)
notify
™ (™)
issue IPR =Ge;:_ Manager
Name = IprEventMgr
) generate event 260)
) 5/4 NodePMMain.exe IprMgrimpl.exe 2\62
FIG. 11

Send To Host

Send To Host
272

FIG. 12

272 IPR2HOST

TRANSLATOR

{PR2HOST
TRANSLATOR

Register Receive Receive

1
i
[
|
|
I
I
[
I
: Register
I

Monitor

CORBA I/F
IPRClient WRAPPER
WRAPPER OLD OLD LIBRARY NEW
APPLICATION APPLICATION

Client Processes lssued Requests are Forwarded to IprMgr in Active PM

SUBSTITUTE SHEET (RULE 26)

CORBA I/F Issue

NEW APPLICATION

IPRClient 1/F

PCT/US98/26439

WO 99/30514
15/21
Application IprManager EventManager IPR GUI
~ registerRegExp(IPRs)
issue(lpr)
notify(lpr)
notify(Ipr)
— ipr Browser Main Window o]}l
File View lpr Tools Help
(= \)
=] (DD 88] ™
X IPR Category Overview
2 * A D MIN
Q oA MA
+ COMM
+ CONTROL
¢ MEC
+ NETWORK
+ SVCKTB
+ TRUNKB
I] I t I T
00:26:00 03:06:40 06:35:20
Time
Category Caot§ Date Time Count Program Task Description
CONTROL 3 08/05/95 00:06:15 15 FCOLL 13570 MANUAL PROCESSOR REMOVAL Z
fjmisc 278 08/05/95 00:06:13 17 FCOLL 13570 DSt HOURLY THRESHOLD CROSSING
MISC 280 08/05/95 00:06:13 7 FCOLL 13570 DS1 DAILY THRESHOLD CROSSING
CONTROL 3 08/05/95 00:06:13 14 FCOLL 13570 MANUAL PROCESSOR REMOVAL
{{ conTROL 15 08/05/95 00:06:13 12 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL
CONTROL 15 08/05/95 00:06:12 11 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL
CONTROL 15 08/05/95 00:06:12 10 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL
CONTROL 3 08/05/95 00:06:11 13 FCOLL 13570 MANUAL PROCESSOR REMOVAL
CONTROL 15 08/05/95 00:06:11 9 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL
CONTROL 15 08/05/95 00:06:10 8 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL
ADMIN 0 08/05/95 00:06:10 7 FCOLL 13570 EXTERNAL MEMORY REMOVAL
CONTROL 3 08/05/95 00:06:09 12 FCOLL 13570 MANUAL PROCESSOR REMOVAL =
CONTROL 15 08/05/95 00:06:09 6 FCOLL 13570 MANUAL EXTERNAL MEMORY REMOVAL 7|
IZ]L_“h—‘_—_T_—ZE

FICG.

SUBSTITUTE SHEET (RULE 26)

14

PCT/US98/26439

WO 99/30514
16/21
PM Node (active) PM Node (standby)
304~ 302 302
\ - updates - /
=C DCMaster ‘): L DCMaster)
sends data
208--0C) P r
sends
dato " ds dat _—
Application Node sends data Application Node
oliects

301 | shared

<‘DC) collects
201 | shored

298 memory [300 298 memory ™300
= ="
i
|
Peg Counters Oy ¥29
(made up of 12- (60 minutes total) FIG. 15
five minute slots) 07 59
299
K DcProcess \

DcMProcess

]
(TheDcMaster)=] RevColiMsg

322

Control
(PM)

1 3207 | Pe9

dict.

(TheDc)

counter

324

Application

(user)

/

DC Test Driver Process

FIG. 16

SUBSTITUTE SHEET (RULE 26)

_~306

WO 99/30514 PCT/US98/26439

!

17/21

344 —
TC Server Application Node

PM Node for SCP1
Requests Application

346 340 340

-) Counter
(TC Serve‘r Pro‘t:essJ. Th.r?shc_)l d
_ T Notifications @ Applicotion
DMS
344 —
C Orbeline > APP"COtj_SOZO Node
PM Node for SCP2 Application
342
N\ 344
MS

CTC Server Proce59<—

I

b

]

FIG. 17

Application

360\ Application Code

36 ORB~independent Thresholded Counter Subsystem
2~ Objects
(ThresholdedCounterStore, ThresholdedCounter,

364~] ORB-dependent Thresholded Counter Store client
(orbThresholdedCounterStore)

» DOME Orbeline n

PM Node 3/6 4

ORB-dependent Thresholded Counter Store server
(orbThresholdedCounterStore)

DOME Orbeline -

FIG. 18
SUBSTITUTE SHEET (RULE 26)

PCT/US98/26439

processes handle
inbound messages

or other nodes

WO 99/30514
18/21
Sends outbound
messages to the
MH creates the
host Or\mOthe' node link processes
LT I—— EJ LinkONI The LinkXXX
M ehored 1 87
370 | shared |
| memory | [Jq-——-——-—-—
! _ ' f the h
| _(Ioglg:ol = . rom the host
link list)]) --
C MH Test Driver)

Application (user; 1
and Control (PM

370 e) (uinkiep) (Linkupp) (Linknt)
J 3 A 4

[3

[

37411CP 376~|UDP 378~"]Decnet

374~]TCP 376~"|UDP 378~ Decnet

CLink;'CP) (Link

A J \ 4

{JDP) (Linll’[)Nl) (w370

Application (userg
and Control (PM

C

MH Test Driver

)

FIG. 20

SUBSTITUTE SHEET (RULE 26)

WO 99/30514 PCT/US98/26439

19/21

DOME Subsystem
Local node-client requests/responses FIG. 21

—————— e —
' |
- Control
r I/Fs
' DOME
| Test
: Driver
| incoming " shored 980
: 370 | | messagés | memory I
| - L——_—< CE I/F
| . -
Remote | C MIH) CLIHITTCP) (Dorr:eSrv D

node-client :
requests/| outgoing messM
responses |

y

C MH) CLkaCP) (Domesry Jo—=/F

|
|
|
: ————
ncoming
I 370 rrl1esso 1 shaored |
ges | memory K_
I
| —_———— 380
: Control |/F
L
Application Process
m————— S
I “Group A"
FIG. 22 : 40\2 P DbgTrace ;
set | ° !
+=~ mask | get 400 insert1
, 9t 400 3 meert
| I
I DbgTrace
404 !
L e o o o e e e e A o
Dbg@ o Trace Buffer
————————————————— 410
| “Group B”
: DbgTrace ;
I ° |
400
sel | /mcsk 400 o msert:
|
1 402 Dbgirace I
Dump |
the buffer “————=—————————————

SUBSTITUTE SHEET (RULE 26)

WO 99/30514

PCT/US98/26439

20/21
- mate e 430
C DmsMaster (Master f> S DmsMaster (Master)
t /] update t t update
430 1 1
Controf| Application @msServer Control| Application @msServer
(PM) (user) BN (PM) (user) . | MAN
Application 439 Application 432
(user) (user)
Y Y Y \d
(Dictionary Management Test Driver Process)
FIG. 23
442\ 440
SITE: scp n
Node 1 Node 2 coo Node n
co o0 co
FIG. 24

FIG. 25

SUBSTITUTE SHEET (RULE 26)

WO 99/30514 PCT/US98/26439

21,/21

440
SITE: scp n

450
AN

Node 1 || 000 || Node n |}~442

(-2} -X-

FIC. 26 4

SUBSTITUTE SHEET (RULE 26)

	2009-09-02 Foreign Reference

